Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Рекомендуемая скорость движения воздуха в воздуховодах:

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.

Рекомендация 1.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Рекомендация 2.

В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

Пример расчета вентиляционной системы:

Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м3/ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м3/ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

Участок 4: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

Определение потерь давления в воздуховодах.

01 мая 2012 Теги: БиблиотекаВентиляцияСтатьи

Работа вентиляционного аппарата характеризуется рядам технических параметров. Некоторые параметры соответствуют техническим параметрам насосного оборудования. Поэтому использование теории лопастных насосов для описания рабочего цикла вентиляторов вполне обосновано, так как давление, которое создает движение лопаток вентилятора, невелико, а сжимаемостью газового потока можно пренебречь. Основные формулировки и определения:

Степень повышения давления (ε) – это отношение газового давления на выходе из вентиляционного аппарата (р2) к газовому давлению на входе вентилятора р1 :
ε = р2/р1

Полное вентиляционное давление – это разность давления газа перед вентилятором и за ним (Па):
рv = р2 – р1

Давление динамическое – давление потока газа при выходе из вентилятора, рассчитанное по выходному сечению и средней вентиляционной скорости (Па):

Давление статическое – разность между полным и динамическим давлениями (Па):
psv = pv – pdv

Вентиляционная подача – объемное количество воздуха (газа), который поступает в вентиляционный аппарат в единицу времени, отнесенное к условиям входа в вентилятор, м3/с:

где Dр – диаметр рабочего колеса вентилятора по наружным кромкам его лопастей, м; φп – коэффициент подачи вентилятора, который характеризует его пропускную способность; u – окружная скорость, определяемая по частоте вращения колеса и диаметру Dр:

, м/с.

Таким образом, подача вентилятора определяется по одному геометрическому размеру Dр с введением коэффициента φп, который определяется эмпирическим путём и зависит от аэродинамических и конструктивных особенностей аппарата. Величина коэффициента изменяется от 0,01 до 0,9 единиц.

Полезной мощностью называется энергия, которая сообщается газу от вентиляционного аппарата в единицу времени, (Вт):
Nп = рvQ

Потребляемой мощностью называется мощность на вентиляционном валу без учета потерь мощности в элементах привода и подшипниках (Вт):
N = рvQ/η,

где η – полный КПД вентилятора, который определяется как
η = ηоηгηм,

где ηо – объёмный КПД вентилятора; ηм – механический КПД; ηг – аэродинамический КПД (аналогичный гидравлическому КПД).

Полный КПД вентилятора равен отношению полезной мощности вентилятора к потребляемой мощности.

Иногда для характеристики вентиляторов используют не полное давление, а лишь его статическую часть. В таких случаях энергетическую эффективность вентиляционного аппарата рассчитывают при помощи статического КПД:
ηs = Q psv/N,
ηs = (0,7…0,8) η.

Удельная быстроходность вентилятора — критерий для оценки пригодности работы вентилятора в режиме, определяемом частотой вращения n и величинами Q, Dp, pv.

Удельная быстроходность nу – частота вращения рабочего колеса вентиляционного аппарата, при которой подача при нормальных условиях составляет 1 куб. м/с и развивается давление величиной в 10 Па при максимальном КПД. Параметр определяется по следующей формуле:

где Q – подача вентилятора; n – частота вращения колеса; р – давление .

Общее понятие о конструкции агрегата и его назначении

Осевой вентилятор – это лопастная воздуходувная машина, которая передает механическую энергию вращения лопастей рабочего колеса воздушному потоку в виде потенциальной и кинетической энергии, а он затрачивает эту энергию на преодоление всех сопротивлений в системе. Осью рабочего колеса данного типа является ось электродвигателя, она располагается по центру воздушного потока, а плоскость вращения лопастей перпендикулярна ему. Агрегат перемещает воздух вдоль своей оси за счет лопаток, повернутых под углом к плоскости вращения. Крыльчатка и электродвигатель закреплены на одном валу и постоянно находятся внутри воздушного потока. Такая конструкция имеет свои недостатки:

Место установки вентилятора.

  1. Агрегат не может перемещать воздушные массы с высокой температурой, которые могут повредить электродвигатель. Рекомендуемая максимальная температура – 100° C.
  2. По той же причине не допускается применять этот тип агрегатов для перемещения агрессивных сред или газов. Перемещаемый воздух не должен содержать липких включений или длинных волокон.
  3. В силу своей конструкции осевой вентилятор не может развивать высокое давление, поэтому непригоден к использованию для вентиляционных систем большой сложности и протяженности. Максимальное давление, которое может обеспечить современный агрегат осевого типа, находится в пределах 1000 Па. Однако, существуют специальные шахтные вентиляторы, конструкция привода которых позволяет развивать давление до 2000 Па, но тогда уменьшается максимальная производительность – до 18000 м³/ч.

Достоинства этих машин следующие:

Устройство осевого вентилятора.

  • вентилятор может обеспечить большой расход воздуха (до 65000 м³/ч);
  • электродвигатель, находясь в потоке, успешно охлаждается;
  • машина не занимает много места, имеет небольшой вес и может быть установлена прямо в канале, что снижает затраты при монтаже.

Все вентиляторы классифицируются по типоразмерам, указывающим на диаметр рабочего колеса машины. Данную классификацию можно увидеть в Таблице 1.

Таблица 1

Типоразмер 3 4 5 6 8 10 12 12,5 16 20 25 30 40
Диаметр рабочегоколеса, мм 320 400 500 630 800 1000 1200 1250 1600 2000 2500 3200 4000

Описание вычислений параметров воздуходувной машины

Расчет вентиляционного агрегата любого типа выполняется по индивидуальным аэродинамическим характеристикам, не является исключением и осевой вентилятор. Вот эти характеристики:

Установка осевого вентилятора.

  1. Объемный расход или производительность.
  2. Коэффициент полезного действия.
  3. Мощность, необходимая для привода агрегата.
  4. Действительное давление, развиваемое агрегатом.

Производительность была определена ранее, когда выполнялся расчет самой вентиляционной системы. Вентилятор должен ее обеспечить, поэтому значение расхода воздуха остается неизменным для расчета. Если же температура воздушной среды в рабочей зоне отличается от температуры воздуха, проходящего через вентилятор, то производительность следует пересчитать по формуле:

L = Ln x (273 + t) / (273 + tr), где:

  • Ln – необходимая производительность, м³/ч;
  • t – температура воздуха, проходящего через вентилятор, °C;
  • tr – температура воздуха в рабочей зоне помещения, °C.

Определение мощности

После того как необходимое количество воздуха окончательно определено, нужно выяснить мощность, необходимую для создания расчетного давления при этом расходе. Расчет мощности на валу рабочего колеса производится по формуле:

NB (кВт) = (L x p) / 3600 x 102ɳв x ɳп, здесь:

Технические характеристики осевых вентиляторов.

  • L – производительность агрегата в м³ за 1 секунду;
  • p – необходимый напор вентилятора, Па;
  • ɳв – значение КПД, определяется по аэродинамической характеристике;
  • ɳп – значение КПД подшипников агрегата, принимается 0,95-0,98.

Значение установочной мощности электродвигателя отличается от мощности на валу, последняя учитывает только нагрузку в рабочем режиме. При пуске любого электродвигателя происходит скачок силы тока, следовательно, и мощности. Этот пусковой пик должен быть учтен при расчете, поэтому установочная мощность электродвигателя будет:

Ny = K NB, где K – коэффициент запаса на пусковой момент.

Значения коэффициентов запаса при различной мощности на валу отражены в Таблице 2.

Таблица 2

Мощность на валу, кВт До 0,5 0,51 – 1,0 1,01 – 2,0 2,01 – 5,0 Свыше 5,0
Коэффициент запаса для осевых вентиляторов 1,2 1,15 1,1 1,05 1,05

Если агрегат устанавливается в помещении, в котором температура воздуха может достигать по разным причинам +40° C, то параметр Ny следует увеличить на 10%, а при +50° C установочная мощность должна быть выше расчетной на 25%. Окончательно этот параметр электродвигателя принимают по каталогу завода-производителя, выбрав ближайшее большее значение к расчетному Ny с просчетом всех запасов. Как правило, воздуходувную машину устанавливают до теплообменника, который нагревает воздух для дальнейшей его подачи в помещения. Тогда электродвигатель будет запускаться и работать на холодном воздухе, что есть более экономично в плане расхода электроэнергии.

Воздуходувные машины разных типоразмеров могут быть укомплектованы электродвигателями различной мощности в зависимости от напора, который требуется получить. Каждая модель агрегата имеет свою аэродинамическую характеристику, которую завод-производитель отражает в своем каталоге в графическом виде. Коэффициент полезного действия – величина переменная для различных условий работы, окончательно ее можно будет выяснить по графической характеристике вентилятора, опираясь на величины производительности, расхода и установочной мощности, вычисленные ранее.

Основная задача расчета и подбора вентилятора – выполнить требования по перемещению необходимого количества воздуха с учетом сопротивления сети воздуховодов, при этом добиться максимального значения КПД агрегата.

Если рабочая точка, определенная на графической характеристике по значениям давления и производительности, указывает на низкий КПД, следует взять вентилятор другого типоразмера.

Еще один параметр, характеризующий воздуходувные машины, называют удельной быстроходностью. Ее величина показывает, какая должна быть скорость вращения рабочего колеса вентилятора при нормальных условиях работы, чтобы переместить 1 м³ воздуха за 1 секунду, при этом развивается напор 10 Па и максимальное значение КПД. Расчет данного параметра выполняется по формуле:

nуд = 5,3 (Q0,5 / p0,75) n.

В этой формуле:

  • nуд – величина удельной быстроходности, об/мин;
  • Q – объемный расход воздуха, м³ за секунду, Q = L / 3600;
  • p – необходимое давление, полученное в результате расчета, Па;
  • n – скорость вращения рабочего колеса согласно каталогу производителя, об/мин.

Практические расчеты по данной формуле показывают, что осевые вентиляторы большой производительности и малого напора отличаются большей быстроходностью, и наоборот. Например, агрегаты с низким давлением имеют показатель быстроходности более 200 об/мин, а с высоким – от 50 до 100 об/мин.

Рубрики: Статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *