Электрохимическая коррозия — распространенный вид коррозионного процесса, возникающий при взаимодействии металлоконструкции с окружающей средой. Явление вызвано термодинамической неустойчивостью металлов в окружающих их средах и наличия в них блуждающих токов.

Блуждающие токи, появляющиеся в грунте при его использовании как токопроводящей среды, несут с собой опасность для трубопроводов из металла. Под их воздействием трубы разъедает ржавчина, возникает течь — в результате металлические сооружения разрушаются и приходят в негодность.

Продлить период службы трубопроводов и прочих подземных металлических сооружений позволяет строительство электрохимзащиты. Это один из самых надежных способов предохранения металлоконструкций от электрохимической коррозии.

Понятие электрохимической защиты

Электрохимическая защита оборудования и сооружений из металлов — комплекс мероприятий, предпринимаемых с целью предотвращения коррозионных процессов, поддержания работоспособности защищаемых объектов в период эксплуатации. Основной результат от использования средств ЭХЗ — охрана инженерных коммуникаций от воздействия коррозии, влекущей огромные экономические потери из-за преждевременного износа оборудования.

Суть ЭХЗ состоит в управлении токами коррозии, всегда образующимися при контакте металлоконструкции и электролита. Посредством электрохимзащиты анодная разрушающаяся зона переходит с защищаемого объекта на анодное заземление или стороннее изделие из более активного металла. В результате смещения электродного потенциала металла распространение коррозии останавливается.

Главное при устройстве электрохимзащиты — обеспечить обязательный контакт защищаемого сооружения и внешнего анода с помощью металлического кабеля или контакта и электролита. Электрическая цепь, в которую входит защищаемый объект, кабель ЭХЗ, анод и электролит, должна замкнуться — в противном случае защитного тока в системе не возникнет.

Типы ЭХЗ

Различают 2 вида ЭХЗ от коррозии:

  • анодная;
  • катодная и ее разновидность — протекторная.

Анодная

При анодной защите потенциал металла смещается в положительную сторону. Ее эффективность зависит от свойств металла и электролита. Методика используется для конструкций из углеродистых, высоколегированных и нержавеющих сталей, титановых сплавов и различных пассивирующихся металлов. Такая ЭХЗ отлично решает поставленные задачи в средах, хорошо проводящих ток.

Анодная электрохимзащита применяется реже, чем катодная, поскольку к защищаемому объекту выдвигается немало строгих требований. Однако у нее есть свои преимущества: значительное замедление скорости коррозионного процесса, исключение возможности попадания продуктов коррозии в среду или производимую продукцию. Оборудование ЭХЗ этого типа выбирают на основе малорастворимых элементов: платины, нержавеющих высоколегированных сплавов, никеля, свинца.

Анодная защита реализуется различными способами: смещением потенциала в положительную сторону посредством источника внешнего тока или введением окислителей в коррозионную среду.

Катодная

Катодная электрохимзащита используется в случаях, когда металлу не присуща склонность переходить в пассивное состояние. Ее суть заключается в приложении к металлоизделию внешнего тока от отрицательного полюса, поляризующего катодные участки, тем самым приближая показатель потенциала к анодным. Положительный полюс, который имеет источник тока, присоединяется к аноду, за счет чего коррозия защищаемого объекта минимизируется. При этом анод постепенно разрушается, требуя замены.

Катодная защита может быть реализована различными способами:

  • поляризация от внешнего источника электротока;
  • снижение скорости протекания катодного процесса;
  • контакт с металлом, потенциал коррозии у которого в этой среде более электроотрицательный.

Поляризация от источника электротока, расположенного снаружи, часто используется при защите конструкций, находящихся в воде или почве. Этот вид системы ЭХЗ применяется для олова, алюминия, цинка, углеродистых и легированных сталей. В качестве внешнего источника тока выступают станции катодной защиты.

Протекторная

Строительство ЭХЗ протекторного типа подразумевает применение протектора. В этом случае к защищаемому сооружению присоединяют металл, имеющий более электроотрицательный потенциал. В результате разрушается не металлический объект, а протектор, который постепенно корродирует и требует замены на новый.

Данный тип электрохимзащиты эффективен в тех случаях, когда переходное сопротивление между окружающей средой и протектором небольшое. У каждого протектора есть свой радиус действия — это максимальное расстояние, на которое его можно удалить, не рискуя потерять защитный эффект.

Протекторная ЭХЗ применяется для предохранения от коррозионного разрушения сооружений, находящихся в нейтральных средах: в воздухе, почве, морской или речной воде. Протекторы для электрохимической защиты трубопроводов изготавливают из магния, цинка, алюминия, железа с дополнительным введением легирующих компонентов.

Для обеспечения высокого уровня протекторной защиты нужно правильно выбрать тип протектора в зависимости от объекта ЭХЗ (корпуса судов, резервуары с нефтепродуктами и пожарной водой, нефте газопроводы и другие металлоконструкции), а также важна среда где будет установлена протекторная группа (грунт, морская или речная вода, подтоварная вода). Данное условие является необходимым для обеспечения безопасности эксплуатации объекта ЭХЗ и увеличит эффективность протекторной защиты.

О станциях катодной защиты

Эффективное оборудование для ЭХЗ трубопроводов, расположенных под землей, — комплекс станции катодной защиты (СКЗ), состоит из следующих элементов:

  • станция катодной защиты;
  • анодные заземлители;
  • кабельные линии
  • пункт контроля и измерения;

Станции подключают к сети электроснабжения или автономным устройствам. Выходное напряжение на СКЗ может регулироваться вручную или в автоматическом режиме — по току защиты или потенциалу защищаемого объекта.

Строительство электрохимзащиты требует использования надежных составляющих системы. Наша компания предлагает широкий выбор качественного оборудования для защиты разных объектов. Оставьте заявку на сайте: мы вышлем вам прайс по оборудованию ЭХЗ и подробно проконсультируем по возникшим вопросам.

Контрольно-измерительные пункты ЭХЗ

Пункты контрольно-измерительные (КИП) – это пункты, которые предназначаются для обеспечения доступа к проводникам в условиях проведения измерений величин защитных потенциалов, для контроля этих защитных потенциалов металлических конструкций и сооружений, проложенных ниже уровня грунта, и обозначения трасс трубопроводов, а также для обеспечения совместной электрохимической защиты трубопроводов и других сооружений, расположенных под землей, от коррозии.

КИПы имеют широкую область применения и используются:

— на линейных частях магистральных трубопроводов;

— в местах пересечения магистральных трубопроводов;

— в местах пересечения трубопроводов с кабелями связи;

— в местах пересечения трубопроводов с высоковольтными линиями электропередач;

— в местах пересечения трубопровода с автомобильными и железными дорогами (при использовании для трубопроводозащитного кожуха);

— на анодных заземлителях;

— на установках протекторной защиты трубопроводов;

— на электроизолирующих вставках (муфтах).

Контрольно-измерительный пункт конструктивно выполнен в виде стойки с основанием для закрепления в грунте, на которой смонтирован шкаф, в котором имеется дверь для доступа к пластине из текстолита (клеммный терминал), на которой располагаются контрольные зажимы и элементы ручной настройки. КИП дополнительно комплектуется километровым знаком, который позволяет визуально определять трассу трубопровода с воздуха.

Возможно изготовление стойки КИПа из поливинилхлорида (ПВХ), стеклопластика или металла. Применяемые материалы специально предназначаются для эксплуатации на открытом воздухе во всех климатических зонах. Для предотвращения кражи стойки, или свободного изъятия контрольно-измерительного пункта из грунта, стойка КИПа оснащается анкерным устройством.

Клеммный терминал, в зависимости от модели КИП, предназначается для установки до 18 контактных зажимов и изготавливается из поликарбоната. Контактные зажимы могут изготавливаться из нержавеющей стали или латуни. Эти зажимы могут допускать подключение проводников с сечением до 16 мм², а силовые до 70 мм². Для исключения несанкционированного доступа в КИП клеммный терминал обладает крышкой с запирающим устройством.

Измерения величин защитных потенциалов подземных сооружений и контроль защитных потенциалов подземных сооружений проводятся путем подключения специализированных приборов к Контрольно-измерительному пункту.

Маркировка КИПа и предупреждающие (информационные) надписи выполненяются на самоклеющейся пленке с использованием метода термотрансферной печати. В целях повышения стойкости маркировки и надписей к воздействию ультрафиолетового излучения на стойках и коробах КИПа, где нанесены надписи, применено наружное ламинирование специальной защитной пленкой. Стойкость надписей и маркировки составляет не менее 10 лет.

Номенклатура контрольно-измерительных пунктов (КИП) достаточно обширна и может быть разделена на виды по назначению и исполнению. Однако, эта классификация условна, т.к. в зависимости от конкретных условий и проектных решений назначение конкретного КИП может меняться.

Стойки могут изготавливаться в исполнениях для жилой и нежилой зон, и отличаться способом установки: для нежилой зоны – над землей, для жилой – в виде ковера, в ровень с уровнем грунта или асфальта. Также существует разновидность КИПов с телеметрией, которые по заданному расписанию производят измерение защитных потенциалов и передают данные на ПК службы ЭХЗ.

Однако основные виды КИП представлены ниже:

1. Трассовый, который предназначается для измерения защитных потенциалов трубопровода по направлению его пролегания. Устанавливается согласно проекта, вдоль трассы трубопровода.

2. КИП для анодных полей, который предназначается для соединения проводников от отдельных заземлителей и присоединения к ним анодного кабеля от КЗУ. Такие КИП содержат только силовые зажимы на клеммном терминале. Такая конструкция КИП позволяет легко создать соединение и упрощает диагностику отдельных заземлителей в процессе эксплуатации.

3. КИП для точек дренажа, которые предназначаются для соединения контрольного и дренажного проводников от трубопровода, а также проводников от электродов сравнения с соответствующими проводниками КЗУ. Такие КИП содержат силовые и контрольные зажимы на клеммном терминале.

4. КИП со встроенным БДР, который предназначается для установки в местах пересечения трубопроводов с другими подземными коммуникациями для их совместной защиты. Контрольно-измерительный пункт со встроенным БДР позволяет осуществлять совместную защиту нескольких металлических конструкций и сооружений, проложенных ниже уровня грунта, без использования дополнительных устройств. Такие КИП содержат диодно-резисторные каналы, силовые и контрольные зажимы на клеммном терминале.

Принципиальная схема протекторной защиты подземного газопровода

1 — защищаемый газопровод; 2 — изолированные кабели; 3 — контрольный вывод; 4 — протектор; 5 — заполнитель для протектора

Задача электрического секционирования трубопроводов решается установкой изолирующих фланцев с паронитовыми или текстолито­выми прокладками, текстолитовыми втулками и шайбами. Пример конструкции изолирующих фланцев представлен на рисунке ниже.

Газовый колодец относится к подземным техническим сооружениям и предназначен для обслуживания газопровода.

С учетом риска скопления газа его можно считать сооружением повышенной взрыво- и пожароопасности. Кроме того, существует реальная угроза отравления обслуживающего персонала. Все это требует неукоснительного соблюдения правил безопасности при обустройстве таких колодцев.

Принцип работы сооружения

Газовые колодцы представляют собой оборудованные шахты разной глубины для установки в них запорной аппаратуры газопровода, проложенного под землей.

Помимо задвижек и кранов, в них размещается и другое оборудование — технологическое, контролирующее, защитное.

Газопроводы повышенного давления всегда стараются разместить под землей, причем глубина их прокладки зависит от многих факторов: свойства грунта, уровня подземных вод, глубины промерзания, наличия различных ограничений, связанных с поверхностными сооружениями.

Они прокладываются на безопасном расстоянии от зданий, канализации, водопровода и иных коммуникаций.

Минимальное расстояние от газопровода до различных объектов жестко нормируется СниП П-60-75.

Данный документ определяет основные принципы проектирования газового хозяйства в жилых районах и учитывает основные требования безопасности.

Для обеспечения отводов от основной магистрали на трубопроводе необходимо установить запорную аппаратуру, обеспечивающую отключение линии при необходимости.

Выведение ее на поверхность земли в большинстве случаев не допускается, а потому единственный вариант — устройство газовых колодцев. Их монтаж требует особого подхода, несмотря на то, что они внешне и по порядку строительства во многом напоминают канализационный или водопроводный колодец.

Требования к сооружению

Все предъявляемые требования можно подразделить на такие категории: выбор места размещения, строительные нормы и эксплуатационная безопасность (в т.ч. доступный ремонт газовых колодцев).

Все эти условия должны прорабатываться уже на стадии проектирования.

Прежде всего схема расположения колодца должна учитывать нормативы по расстоянию до газопровода. Перед началом работы должны быть тщательно изучена карта местности, включая ее рельеф, распределение залегания подземных вод и состава почвы.

Глубина колодезной шахты зависит от глубины прокладки труб, а она, в свою очередь, связана с параметрами промерзания грунта и характеристик транспортируемого газа.

При пропускании сухого (обезвоженного) газа газопровод может располагаться в зоне промерзания, и глубина в колодцах может начинаться с 70 см, а когда передается газовый конденсат, трубы должны располагаться ниже уровня промерзания.

Конструкция колодца должна учитывать свойства грунта. В подвижных и пучинистых почвах колодца должны иметь повышенную прочность, т.е. изготавливаться из железобетонных колец или монолитного бетона. Стенки и днище должны обладать надежной гидроизоляцией, не допускающей просачивания влаги внутрь шахты.

Для исключения разрушения газопровода при усадке колодезных стенок должна обеспечиваться их независимость от труб. Особое внимание должно уделяться надежности сооружения в сейсмических зонах. В таких районах подушка под днище должна иметь повышенную плотность и толщину не менее 15 см.

Требования безопасности направлены на устранение главной опасности — накопление газа в шахте при его утечках. Высокая газовая концентрация чревата взрывом при появлении малейшей искры, а также опасна для человека, призванного обслуживать оборудование.

Защита от такого явления должна обеспечиваться недопущением утечки, для чего после монтажа проводится тщательный контроль оборудования и сварных швов; установкой газоанализаторов, подающих сигнал о появлении опасной газовой концентрации; монтажом эффективной вентиляционной системой.

Эксплуатационные требования связаны с безопасностью и удобством обслуживания оборудования. Объем камеры в колодцах должен позволять свободное размещение рабочего при управлении запорной аппаратурой, а также при проведении ремонтной работы, в т.ч. при замене оборудования.

Вентили и краны в колодцах должны свободно поворачиваться при любой температуре воздуха. Для исключения замерзания обеспечивается надлежащая теплоизоляция. Помимо специфических требований, к газовым колодцам предъявляются и общие требования: защищенность от осадков, паводковых вод и падения случайных предметов; предотвращение падения человека в шахту; достаточная механическая прочность перекрытия, в т.ч. при наезде автотранспорта, и стенок при движении или замерзании грунта; обеспечение коррозионной стойкости оборудования.

Кроме того, существует важное условие — возможность быстрого обнаружения газовых колодцев и коверов даже под снежным сугробом. Для этого устанавливаются специальные указатели. Соответствующие знаки размещаются и по ходу трассы газопровода, причем с указанием глубины прокладки.

Разновидности сооружений

Виды газовых колодцев определяются конструкцией, применяемыми материалами и заглублением шахты. По глубине выделяются такие сооружения:

  1. Колодцы мелкого заложения. Так может называться неглубокий колодец, который находится выше уровня промерзания почвы (как правило, не глубже 1 м). Работы в них проводятся при частичном погружении рабочего в шахту.
  2. Глубокие колодцы. Они заглубляются ниже уровня промерзания (вплоть до 2-2,5 м). Человек при обслуживании полностью опускается в шахту.
  3. Особо выделяются коверы (можно увидеть на фото). Это прочная емкость, в которой устанавливается запорная аппаратура и которая частично заглубляется в грунт. Обслуживание такого устройства обеспечивается с поверхности, открыв крышку, оно полностью закрывает и защищает оборудование.

По технологии возведения колодцы могут быть монолитными, т.е. изготавливаться путем заливки бетоном, или сборные (кольца, кладка, срубы). В качестве материала стенок шахты используются железобетонные колодезные кольца, кирпич, камень, дерево, бетон.

Большая Энциклопедия Нефти и Газа

Cтраница 2

При невозможности такойустановки отключающих устройств они должны быть максимально приближены к штуцерам емкостей.  

Какой категории необходимаустановка отключающих устройств в местах пересечения газопроводами автомобильных дорог.  

Количество и местаустановки отключающих устройств на газопроводах определяются проектной организацией по согласованию с городским газовым хозяйством.  

На газопроводах следует предусматриватьустановку отключающих устройств на вводах газопроводов в отдельные жилые и общественные здания или группу смежных зданий ( два и более, а также, перед наружными ( откръушми газопотребляющими установками.  

На газопроводах следует предусматриватьустановку отключающих устройств на вводах газопроводов в отдельные жилые и общественные здания или группу смежных зданий ( два и более), а также перед наружными ( открытыми) газопотребляющими установками.  

Резьбовые и фланцевые соединения допускаются в местахустановки отключающих устройств, компенсаторов, контрольно-измерительных приборов и другой арматуры.  

Колодцы на подземных газопроводах располагают в местахустановки отключающих устройств и температурных компенсаторов. При установке колодцев в пучинистых грунтах на их стенки зимой могут действовать значительные касательные силы морозного пучения и поднимать их. Для обеспечения устойчивости колодцев применяют различные противопучинистые меры, эффективность которых рассмотрена в гл.  

Укладка в траншею нитки полиэтиленового трубопровода малого диаметра.  

На газовых сетях колодцы сооружают в местахустановки отключающих устройств и компенсаторов.  

Резьбовые и фланцевые соединения допускаются в местахустановки отключающих устройств, компенсаторов, регуляторов давления, контрольно-измерительных приборов и другой арматуры.

При разъемных соединениях на цилиндрической резьбе в качестве уплотнительного материала применяют льняную прядь, пропитанную свинцовым суриком или белилами, разведенными на натуральной олифе, или специальные пасты заводского изготовления.

Применять для этого пеньку или заменители натуральной олифы не разрешается.  

Обратите внимание

Газопроводы АГНС испытывают на прочность и плотность послеустановки отключающих устройств и другой аппаратуры. Испытание газопроводов на прочность проводят водой под давлением, равным 1 25 рабочего давления газа. Под испытательным давлением газопроводы выдерживают не менее 1 ч, после чего давление снижают до рабочего и проверяют все соединения и арматуру газопроводов.  

Допускаются ли резьбовые и фланцевые соединения в местахустановки отключающих устройств.  

На подземных газопроводах фланцевые соединения допускается применять в местахустановки отключающих устройств, компенсаторов, а также при монтаже изолирующих фланцев.  

У механизмов передвижения кранов и грузовых тележек проверяют правильностьустановки отключающих устройств ( линейки) и срабатывание концевых выключателей.

Следует помнить, что концевой выключатель механизма передвижения должен быть установлен таким образом, чтобы отключение двигателя происходило на расстоянии до упора, равном не менее половины пути торможения механизма, а у башенных портальных и козловых кранов, а также мостовых перегружателей — не менее полного пути торможения.  

Страницы:      1    2    3    4

Этапы строительства

Перед началом строительной работы разрабатывается детальный чертеж колодца с расположением всего газового оборудования, а также схема-привязка к местности, которая учитывает безопасный подход к люку и все нормы по удаленности различных объектов. Само строительство осуществляется в следующем порядке:

  1. Рытье шахты колодца нужной глубины.
  2. Засыпка подушки из щебня и песка с тщательной трамбовкой. Толщина слоя составляет 10-20 см в зависимости от размеров сооружения и состава почвы.
  3. Монтаж армировки из стальных прутков диаметром 8-12 мм в виде сетки.
  4. Заливка бетона. Толщина днища составляет 15-20 см. Для изготовления приямка устанавливается опалубка.
  5. Возведение стенок. При монолитной конструкции возводится деревянная опалубка, устанавливается стальная армировка, после чего заливается бетон. Железобетонные кольца поочередно опускаются вниз и устанавливаются строго вертикально, при этом шов заделывается цементным раствором. Для ввода труб формируются каналы на нужной высоте.
  6. Гидроизоляция стенок. Она выполняется в зазоре между стенками колодца и грунтом. Для ее изготовления применяется битум и рубероид. При необходимости укладывается теплоизоляция из минеральной ваты.
  7. Заделка ввода. Герметизация труб обеспечивается при помощи гильз, которые заливаются битумом.
  8. Установка перекрытия. Для этого применяется железобетонная плита с отверстием для люка.
  9. Монтаж оборудования и установка люка.
  10. Проверка качества строительства и контрольные испытания.

Установка оборудования

В газовом колодце может устанавливаться такое оборудование:

  1. Запорная аппаратура: трубопроводные краны с обратными поворотными клапанами; запорные вентили с регулирующими клапанами; запорные задвижки в виде подъемных обратных клапанов; затворы с предохранительными клапанами. Наиболее распространенный вариант — задвижки, в которых при помощи поворота маховика изменяется положение затвора. На газопроводах давлением менее 0,5 МПа используются чугунные задвижки, более 0,5 МПа — стальные. Запорные затворы могут иметь параллельными или клиновидными.
  2. Компенсатор. Этот технологический элемент необходим для предотвращения термических деформаций при изменении температуры среды. В колодцах могут использоваться устройства линзового, лирообразного и П-образного типов. Чаще всего устанавливается линзовый компенсатор. В зимнее время он растягивается, а летом сжимается при помощи специальных тяг.
  3. Предохранительная аппаратура. Она монтируется для предотвращения разрушения стыков при резком повышении давления в газопроводе выше допустимых пределов.
  4. Аппаратура обратного действия не позволяет двигаться газовому потоку в обратном направлении при появлении каких-либо препятствий.
  5. Аварийное оборудование включает устройства для экстренного блокирования аварийного участка трубопровода, прекращая движение газа.

Гидравлические затворы применяются только на подзем­ных газопроводах низкого давления. В настоящее время используют­ся только стальные гидрозатворы, их соединяют с газопроводом свар­кой. Высота запирающего столба воды в гидрозатворе должна превы­шать максимальное рабочее давление в газопроводе не менее чем на 200 мм. Высота столба водяного затвора принимается из условия

Н= Р+ 200 мм,

где Р — давление газа в сети, мм вод. ст.

Верхний уровень воды в гидрозатворе должен быть ниже уровня промерзания грунта.

Если гидрозатвор установлен в нижней части газопровода, он может быть использован одновременно и как конденсатосборник. Гидрозатворы, как правило, устанавливают на ответвлениях к объек­там или на вводах к зданиям.

Для отключения подачи газа (закрытие затвора) необходимо: открыть крышку 5 ковера, вывернуть пробку 4 из трубки 2 и залить через нее в корпус 1 гидрозатвора необходимое количество воды (зимой — незамерзающей жидкости); при пуске газа воду из гидрозатвора откачивают ручным или электронасосом. Сложность и длительность работ по заливке и откачке жидкости — основной недостаток гидрозатворов; положительные качества их — абсолют­ная надежность отключения газа и невозможность его утечки.

Гидрозатворы можно использовать одновременно в качестве пункта для измерения разности потенциалов между землей и трубой. Для этого к трубе гидрозатвора приваривают полосу 3, а в утрамбо­ванный грунт до установки подушки 6 ковера забивают электрод заземления 7. В противном случае устанавливается большой ковер. Гидравлический затвор изготовляется индивидуально местными строительно-монтажными организациями на Ру до 5 кПа, Dу = 50, 65, 80, 100, 150 мм. На рис. б показан гидрозатвор с дополни­тельным кожухом 8, к которому в верхней части приварен отвод с резьбой на конце для навертывания муфты с пробкой. Это позво­ляет использовать гидрозатвор и как устройство для продувки газо­провода.

Гидравлический затвор

а — без устройства для продувки; б — с устройством для продувки.

Рубрики: Статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *