Один из распространенных споров вокруг отопительных систем возникает из-за выбора вида теплоносителя. Одни утверждают, что лучше воды ничего быть не может, другие советуют использовать антифризы.

У нас мнение однозначное — вода. Ниже мы постараемся объяснить, почему.

Производители котлов не просто так запрещают использование антифриза со своей продукцией. Более того, за использование антифриза в качестве теплоносителя, если такая возможность не указана в инструкции, можно лишиться гарантии на котел. На этапе проектирования котлы испытываются с водой, и все процессы заточены на ее физические свойства. Существуют модели, испытанные с некоторыми видами незамерзающих теплоносителей — на них и стоит обратить внимание, если вы все-таки выбрали антифриз.

Лучший теплоноситель — подготовленная для системы отопления вода. Котлы и другие элементы системы десятки лет проектировались именно под использование с водой.

Какую воду заливают в систему отопления?

Перед заливкой в систему отопления вода из водопровода или природных источников требует подготовки. Это нужно, чтобы устранить возможные негативные влияния жидкости на поверхности, с которыми она взаимодействует. В ходе водоподготовки ее фильтруют и умягчают. Но это доступно далеко не всем владельцам котельных. Самое простое — купить подготовленную для систем отопления воду. Обязательно изучите документацию к вашему котлу и радиаторам отопления — в ней должны быть указаны требования к теплоносителю.

Чем опасна не подготовленная вода? Соли кальция и магния вызывают отложения на внутренних поверхностях труб и теплообменнике. В результате отопительная система обрастает накипью. Со временем это может приводить к уменьшению проходного диаметра, снижению теплоотдачи, увеличению энергопотребления и разрушению отдельных элементов отопительной системы. Растворенный в воде кислород повышает опасность возникновения коррозии, но в правильно спроектированной системе воздух эффективно отводится, снижая риск до минимума.

— Если вода — лучший теплоноситель, почему вообще возникают разговоры про антифриз?

Страшный сон любого владельца собственной котельной — ее остановка зимой. Если температура в доме опустится ниже нуля, вода в системе отопления замерзнет. Это может нанести непоправимый вред трубам и агрегатам.

Другая, не столь очевидная причина разговоров про антифриз, кроется в мифах, которые есть в сфере отопления. Антифриз воспринимается как специально разработанный теплоноситель, а вода — как обычный, дешевый вариант. Именно так позиционируют свою продукцию производители.

Когда возникает опасность? Самая распространенная причина — отключение электричества, ведущее к остановке насосов. Еще бывает, что отопление в доме не постоянное, есть простои в отопительный период.

Насколько все на самом деле серьезно? В наших широтах и правда бывает очень холодно. Периодически свет пропадает в каждом доме — где-то реже, где-то чаще. Тогда и возникает мысль использовать в качестве теплоносителя не воду, а жидкость, которая не замерзает. В реальности отключение электричества может не нанести никакого вреда. Все зависит от температуры воздуха и длительности простоя системы. На случай частых отключений систему отопления оснащают системой бесперебойного питания котла.

Важность борьбы с коррозией, опасность цинковых труб

Коррозия опасна, т.к. со временем нарушает целостность системы и вызывает протечки. Но это далеко не все ее отрицательные стороны. Образование ржавчины в трубах и радиаторах снижает их эффективность, т.к. коррозионный слой имеет теплопроводность примерно в 50 раз меньшую, чем металл.

Другие публикации TopClimat.ru по теме

Антифриз в системах отопления

Выбор котельной для частного дома

Иначе говоря, теплоотдача радиаторов снижается при том же режиме работы котла. Кроме этого, снижается скорость теплоносителя в системе, что тоже уменьшает ее общую эффективность. В общем, коррозия в системе приводит к тому, что часть дорогого топлива будет уходить у вас в никуда, причем, эта доля со временем будет только расти.

Но и это еще не все. Частицы ржавчины отделяются от стенок труб под действием течения теплоносителя и негативно влияют на подшипник циркуляционного насоса, который может дать течь, засоряют каналы теплообменников и отопительного котла.

Часто с ржавчиной борются с помощью оцинкованных труб, которые имеют хорошую коррозионную стойкость. Но, помните! В системах отопления нельзя использовать элементы, содержащие цинк, в частности, оцинкованные изнутри трубы. Дело в том, что при рабочих температурах (а это +70°С и выше) теплоносителя цинковое покрытие будет отслаиваться и оседать на нагревательных элементах котла, а антикоррозионные свойства самого теплоносителя значительно ослабятся.

Схема отопления частного дома

Исключением является теплоноситель на основе глицерина, но лучше не рисковать и в этом случае. Нередко производители теплоносителей на глицериновой основе реализуют смешанные составы, которые содержат глицерин и пропиленгликоль.

Что есть антифриз?

Смесь, температура кристаллизации которой существенно ниже, чем у воды. Незамерзающие жидкости содержат различные присадки, которые предотвращают коррозию, окисление, накипь и другие негативные процессы.

Популярные на рынке виды антифризов:

  • На основе этиленгликолей. Эти антифризы самые недорогие, большинство из них отечественного производства. Главный недостаток — токсичность. Вещество опасно для открытых участков тела и дыхательных путей. Этиленгликоли не применяют в открытых, а также двухконтурных системах — из-за существования вероятности попадания вещества в водопровод.
  • Пропиленгликоли безопасны для человека, но из-за этого существенно дороже этиленгликолей, температура кристаллизации выше. Обычно эти составы импортные.
  • На глицериновой основе. Полностью безопасны — даже если попадут в питьевую воду. Самый редкий вид теплоносителя.

Чем антифриз хуже воды?

Котлы и системы отопления создаются из расчета использования с водой, опираясь на ее физические и химические свойства. У антифриза они другие. В этом и состоит главная проблема. Нужно очень постараться и спроектировать отопительную систему так, чтобы свести недостатки антифриза к минимуму.

  1. Вязкость и плотность у антифриза выше, чем у воды. Фактически это означает, что для циркуляции теплоносителя нужны более мощные насосы.
  2. А удельная теплоемкость — ниже.
  3. Есть риск протечки, если материалы уплотнений не совместимы с конкретным составом антифриза.
  4. Более высокий, чем у воды, коэффициент расширения при нагреве. Потребуется расширительный бак большего объема.

Вид теплоносителя лучше всего выбирать на стадии проектирования отопительной системы.

Чем может навредить антифриз?

Этиленгликоль токсичен. Любая протечка или неаккуратное обращение с жидкостью может серьезно навредить здоровью или даже угрожать жизни людей и домашних животных.

Добавление воды в антифриз улучшает ряд его характеристик — вязкость, теплоемкость, — но повышает температуру замерзания теплоносителя. Чем выше концентрация антифриза, тем серьезнее воздействие на металлические элементы и уплотнители системы. Последние могут растворятся под действием концентрированного антифриза, что со временем приводит к протечкам.

Чтобы снизить воздействие коррозии, производитель добавляет в антифриз ингибиторы. Иногда их приходится покупать отдельно и примешивать самостоятельно. Но если переусердствовать с долей воды в теплоносителе, то эффективность присадок снижается, и опасность коррозии возрастает. Происходит это как по вине пользователя, — неточные расчеты при разбавлении — так и в результате подпитки теплоносителя в процессе эксплуатации.

Антифризы не должны контактировать с цинком, который может присутствовать в покрытии труб и фитингов. В результате их взаимодействия образуется нерастворимый осадок, который постепенно разрушает отопительную систему. Производители котлов и других компонентов системы отопления (насосы, соединения, фильтры) с большой вероятностью откажут в гарантии при использовании антифризов в качестве теплоносителя.

Пока отложений не так много, ситуацию можно исправить. Для этого нужно промыть систему отопления.

Разновидности антифриза для отопления

Имеющиеся незамерзающие теплоносители для индивидуальных систем обогрева можно разделить на четыре основных типа по их химическому составу – образованные на базе этиленгликоля, пропиленгликоля, глицерина и бишофита.

  • Антифриз на базе этиленгликоля. Данная разновидность является самой распространенной группой антифризов, благодаря простоте производства и, следовательно, низкой стоимости. Существует два экземпляра данной продукции — в концентрированном виде и в форме уже готового к использованию состава, как правило с нижней границей кристаллизации в -30 ºС.

Особенности химического состава этиленгликоля требуют включения в раствор специальных присадок, которые увеличивают эксплуатационные характеристики такой жидкости. Дело в том, что антифриз на основе этиленгликоля при воздействии высоких температур начинает пениться, образуя при этом газовые пробки. Введение присадок снижает пенообразование и придают составу качества, предотвращающие коррозию металлического оборудования, за исключением оцинкованных элементов.

Другая неприятная особенность этиленгликолевого вещества – его неустойчивость к высоким температурам. Система отопления с таким теплоносителем должна быть правильно отрегулирована, в противном случае после приближения к точке закипания возникнет необратимый процесс разложения этиленгликоля.

При этом образуется твердый нерастворимый осадок, который может забить узенькие каналы в трубах или теплообменниках, а жидкая фаза преобразуется в крайне агрессивные кислоты, которые запустят коррозийные процессы.

Внимание! Этиленгликоль – сильнейший токсический яд, поэтому система отопления должна обладать надежной герметизацией.

Таким образом, если отопительная система не снабжена автоматикой для контроля и поддержания заданной температуры нагрева жидкости, то использовать этиленгликолевые антифризы лучше не стоит. В случае закипания все преобразующие добавки теряют свои свойства, затем следует бурное вспенивание со всеми вытекающими последствиями.

Риск представляет даже небольшое попадание препарата на незащищенные части кожи, поэтому все мероприятия по заправке контура этим теплоносителем должны выполняться с соблюдением строгих мер безопасности. Ярко-красная окраска раствора дополнительно предупреждает пользователя о необходимости соблюдения особых мер предосторожности.

  • Антифриз на базе пропилен-гликоля. Подобные вещества обычно выделяются логотипом «ЭКО» на упаковочном ярлыке, поскольку в случае приблизительно одинакового температурного диапазона применения, пропилен-гликолевые теплоносители абсолютно безвредны.

Такой антифриз вполне допускается использовать в двухконтурных котлах – даже если незначительная часть вещества проникнет в систему горячего водоснабжения, оно не спровоцирует никаких серьезных последствий. Некоторые виды пропилен-гликоля применяются даже в качестве сырья для изготовления емкостей в пищевой промышленности.

Стоит обозначить, что теплоемкость данного теплоносителя выше, чем у этиленгликолевого. Состав обладает характерным смазывающим стенки труб эффектом, что позволяет снизить общее гидравлическое сопротивление, следовательно, снижаются энергетические потери и увеличивается КПД отопительной системы.

А вот агрессивность к оцинкованному покрытию у пропилен-гликоля такая же, как и у этиленгликоля. При этом цена уже разведенных составов значительно, в 5-7 раз, выше. Зато долговечность раствора тоже повышается – до 10 лет.

  • Глицериновый антифриз. По поводу данной разновидности незамерзающих жидкостей единого мнения у специалистов и пользователей нет. Одни утверждают, что этот состав лучший, другие жестко критикуют его качества. Стоит подробнее остановиться на аргументах за и против.

Защитники глицериновых жидкостей утверждают, что:

  1. Глицерин – относительно безвредное для живых организмов вещество.
  2. Обладает широким рабочий диапазоном температур.
  3. При нижней границе кристаллизации — примерно -30 ºС, точка кипения значительно выше, чем у других жидкостей и сравнима с водой – 90-110 ºС.
  4. В случае кристаллизации вещество не расширяется, а после разжижения все качества в полной мере восстанавливаются.
  5. Раствор не окисляет металлы, в том числе и цинк, то есть его можно применять, если в контуре есть оцинкованные элементы.
  6. Не разрушает материал уплотнений и не образует протечек в соединительных узлах.
  7. Абсолютно не горюч, совершенно взрывобезопасен.
  8. Контур после применения в качестве теплоносителя иных веществ, при замене на глицериновый – не нуждается в тщательной очистке и промывке.
  9. Долговечность эксплуатации незамерзающего глицерина составляет 7-10 лет.
  10. По теплотехническим свойствам почти не уступает пропилен-гликолю, однако цена глицеринового антифриза на 20-25% ниже.

Противники использование глицеринового антифриза обращают внимание на его следующие недостатки:

  1. Данные составы характеризуются увеличенной плотностью, что формирует лишние и нежелательные нагрузки на отопительное оборудование. Высокой плотности при этом сопутствует повышенная вязкость, в итоге насосной станции труднее прогонять глицерин по контурам, и изнашивается насос быстрее.
  2. Параметры теплоёмкости не только ниже, чем у воды, но даже уступают пропилен-гликолю. В результате при повышении температуры до 90С появляется сильное вспенивание. Введение специальных присадок способно частично решить данную проблему.
  3. Однако в условиях высоким температур значительно возрастает вероятность запуска химического распада вещества. При этом твердый осадок, образованный в результате распада, содействует зарастанию труб и радиаторов, а выделяемое газообразное вещество — акролеин, имеет весьма противный запах и относится к слабо выраженным канцерогенам.

Кроме того, в случае перегрева глицеринового антифриза, из него выпаривается вода, смесь густеет и стремительно утрачивает свои качества, превращает в желе уже при +15С. В итоге необходима полная замена теплоносителя, чтобы обеспечить нормальное функционирование системы обогрева частного дома.

  • На базе бишофита. Инновация – минеральные теплоносители, которые производятся на основе природного минерала — бишофита. Препарат представляет собой магниевую соль соляной кислоты, полное название химическоого соединения — гексагидрат хлорида магния.

Данное вещество на рынке появилось относительно недавно – в 2010 году. На 2019 год стоимость продукта составляет примерно 70 рублей за 1 литр готового антифриза с порогом замерзания до -30°С.

Изготовитель заявляет такие параметры готового раствора:

  • окрас вещества — светло-желтый, плотность составляет 1117—1250 кг/м?;
  • порог кипения — 116°С, точка замерзания — минус 30°С;
  • удельная теплоемкость — 0.77 ккал/кг o°С (3.23 кДж/кг o°С);
  • благодаря наличию присадок вспениваемость отсутствует;
  • не оказывает агрессивное влияние на уплотнители — силиконовые, паронитовые, резину EPDM и BMS;
  • раствор не токсичен;
  • по вязкости и текучести вещество очень приближено к гликолевым составам.

В сравнении с классическими гликолевыми веществами минеральный антифриз выигрывает, благодаря высокой температуре кипения, стоимости и безопасности для здоровья.

А в отношении плотности и теплоёмкости, проигрывает воде на 23%.

Практическое применение минеральной смеси выявило несколько существенных недостатков:

  1. Слишком высокая текучесть вещества. Благодаря этой характеристики состав проникает даже через паяный стык полипропиленовых труб.
  2. При взаимодействии с воздухом жидкость стремительно улетучивается, оставляя явный солевой нарост.
  3. Раствор вступает в реакцию с голым металлом на сварных швах. В результате в каналах формируются отложения из железа и соли, которые уменьшают проходное сечение и засоряют фильтры.
  4. В результате перегрева антифриза на основе бишофита вещество преобразуется в жижу непонятного цвета.

Учитывая практический опыт применения минерального антифриза, сайт «Сантехник Портал» не рекомендует использование данного вещества в качестве теплоносителя для системы отопления.

Теплоносители для котлов электродного типа

Немного обособленна еще одна разновидность теплоносителей. Это специальные жидкости, предназначенные для применения в отопительных системах с электродными (ионными) котлами.

Для эффективной работы таких контуров химический состав теплоносителя имеет огромное значение, поскольку принцип быстрого нагрева ионной системы предполагает протекание переменного электрического тока непосредственно через теплоноситель.

Это означает, что оптимальный состав должен характеризоваться не только хорошими незамерзающими свойствами и повышенными теплотехническими параметрами, но и обладать определенной концентрацией подобранных солей, чтобы обеспечить ионизацию и электропроводность с выверенным сопротивлением.

В большинстве случаев, производители электродных котлов сопровождают собственное оборудование и грамотно подобранными, идеально адаптированными составами незамерзающей жидкости.

Поэтому при использовании ионного котла, лучше не проводить эксперименты с другими веществами, и выбрать специально предназначенный для него антифриз. Только так можно быть уверенным в корректной и эффективной работе оборудования. Кроме того, использование неподходящего теплоносителя приведет к отказу изготовителя от выполнения своих гарантийных обязательств в случае необходимости.

Расчет теплоносителя для системы отопления

Если необходимо рассчитать объём заполнения уже существующей системы отопления или нужно высчитать, сколько теплоносителя потребуется при переходе с одного типа жидкости на другой, можно использовать несколько способов:

  1. Включить на заполнение полностью пустую систему, и при этом засечь показания водомера в начале и в конце этого процесса.
  2. Наоборот, аккуратно сливать жидкость из целиком наполненной системы, применяя мерные резервуары.
  3. Сделать расчет самостоятельно, учитывая объемов теплообменника котла, всех радиаторов, контуров труб и/или теплого пола (подача + обратка), расширительного бака и других возможных элементов (гидрострелки, буферной емкости, бойлера).

Для третьего варианта можно использовать простую формулу расчета объема теплоносителя в системе:

V = V ( радиаторов) + V (труб) + V (котла)

Формула для расчета объема жидкости в трубе:

V (объем) = S (площадь сечения трубы) * L (длина трубы)

При этом объем теплоносителя в контуре отопления можно примерно подсчитать и без использования формул. Для этого нужно знать только мощности системы обогрева.

Здесь берется соотношение, что оборудованию для передачи 1 кВт тепла потребуется 15 литров жидкости. Несложно подсчитать, что для отопительной системы мощностью 75 кВт необходимо75×15=1125 литров теплоносителя.

Внимание! Приблизительный расчет объема воды в системе отопления производится из соотношения 15 л воды на 1 кВт мощности котла.

Однако недостаточно просто высчитать расход теплоносителя, также необходима формула для расчета объёма расширительного бака:

V = (VS x E)/d, где:

V – результат вычисления; VS – расчетный расход теплоносителя (просуммированный объём всех составляющих системы теплоснабжения); d — коэффициент эффективности расширительного бака; Е — так называемый коэффициент расширения жидкости, для воды он составляет 4%, для антифриза на базе этиленгликоля — 4,4 %.

Расчеты очень приблизительные и сложные. Чтобы упростить себе задачу, используйте быстрый способ – Калькулятор объема системы отопления.

Способы заполнения системы теплоносителем

Вопрос заполнения, обычно, появляется только в случае организации системы закрытого типа, так как открытые контуры без проблем заполняются через расширительный бак. В него просто наливается теплоноситель, который под действием силы гравитации растекается по всем контурам. При этом важно, чтобы все воздухоотводчики были открыты.

Заполнение открытой системы:

Существует несколько методик заполнения теплоносителем закрытой системы обогрева: самотеком, с погружным насосом или при помощи специального опрессовочного оборудования. Более детально остановимся на каждом из способов.

Самотеком. Этот способ закачать теплоноситель для системы отопления хоть и не требует оборудования, но уходит на него много времени. Приходится долго выжимать воздух и так же долго набирать нужное давление. Его, кстати, накачивают автомобильным насосом. Так что оборудование все-таки потребуется.

Нужно найти самую высокую точку. Обычно, это какой-то из газоотводчиков (его нужно снять). При заполнении открыть кран для спуска теплоносителя (самая низкая точка). Когда через него побежит вода, система заполнена:

  1. Когда система заполнена (из крана для слива побежала вода), взять резиновый шланг длиной порядка 1,5 метров, прикрепить его к входу в систему.
  2. Выбрать вход так, чтобы виден был манометр. В этой точке установить обратный клапан и шаровый кран.
  3. К свободному концу шланга прикрепить легко снимающийся переходник для подключения автомобильного насоса.
  4. Сняв переходник, в шланг налить теплоноситель (держать поднятым вверх).
  5. Заполнив шланг, при помощи переходника подсоединить насос, открыть шаровый кран и насосом закачать жидкость в систему. Надо следить, чтобы не закачивался воздух.
  6. Когда почти вся содержащаяся в шланге вода закачана, кран закрывается, операция повторяется.
  7. На небольших системах чтобы получить 1,5 Бар, придется повторять ее 5-7 раз, с большими придется возиться дольше.

При таком способе можно шланг подключить от водопровода, можно подготовленную воду налить в бочку, поднять ее выше точки входа и так залить ее в систему. Также заливается и антифриз, но при работе с этиленгликолем потребуется респиратор, защитные резиновые перчатки и одежда. При попадании вещества на ткань или другой материал он тоже становится токсичным и подлежит уничтожению.

С помощью погружного насоса. Для создания рабочего давления теплоноситель для системы отопления можно закачивать маломощным погружным насосом:

  1. Насос нужно подключить к самой низкой точке (не точка слива системы) через шаровый кран и обратный клапан, на точке слива системы установить шаровый кран.
  2. Теплоноситель налить в емкость, опустить насос, включить его. В процессе работы постоянно добавлять теплоноситель — насос не должен гнать воздух.
  3. В процессе следить за манометром. Как только его стрелка сдвинулась с нулевой отметки — система заполнена. До этого момента ручные воздухоотводчики на радиаторах могут быть открыты — через них будет выходить воздух. Как только система заполнилась, их надо закрыть.
  4. Далее нужно поднять давление, продолжая насосом качать теплоноситель для системы отопления. Когда оно достигнет требуемой отметки, насос остановить, шаровый кран закрыть
  5. Открыть все воздухоотводчики (на радиаторах тоже). Воздух выходит, давление падает.
  6. Снова включить насос, докачать немного теплоносителя, пока давление не достигнет проектного значения. Снова спустить воздух.
  7. Так повторять до тех пор, пока их воздухоотводчиков не перестанет выходить воздух.

Далее можно запустить циркуляционный насос, снова стравить воздух. Если при этом давление осталось в пределах нормы, теплоноситель для системы отопления закачан. Можно запускать ее в работу.

Насосом для опрессовки. Заполняется система так же, как и в описанном выше случае. При этом насос используется специальный. Он обычно ручной, с емкостью, в которую заливается теплоноситель для системы отопления. Из этой емкости жидкость закачивается через шланг в систему.

При заполнении системы рычаг идет более-менее легко, при подъеме давления работать уже тяжелее. Манометр есть как на насосе, так и в системе. Следить можно там, где удобнее.

Далее последовательность такая же, как описано выше: накачали до требуемого давления, спустили воздух, снова повторили. Так до тех пор, пока воздуха в системе не останется. После — тоже нужно запустить циркуляционный насос минут на пять, стравить воздух. Тоже повторить несколько раз.

Выбор циркуляционного насоса

Чтобы выбрать нужный циркуляционный насос, можно воспользоваться небольшой шпаргалкой. Производительность насоса рассчитывается исходя из общего объема системы отопления. Самый простой способ определить ее — заполнить систему водой полностью и стравить воздух, а затем слить воду из контура в мерную емкость при открытых воздушных клапанах.

Каждый теплоноситель из линейки конкретного производителя имеет свои рабочие диапазоны

Минимальная скорость теплоносителя в бытовых отопительных системах равна 0,5 м/с, такая скорость препятствует отложению солей на стенках труб. Как правило, выбирается скорость движения теплоносителя в диапазоне от 0,7 до 1 м/с. Если скорость теплоносителя превышает 1 м/с, во время работы насос будет создавать излишний шум. От скорости зависит производительность циркуляционного насоса.

Срок службы антифриза

Несмотря на то, что производители часто указывают срок эксплуатации антифриза на уровне 7-8 лет, специалисты-практики считают, что более 5 лет теплоноситель без обновления не протянет. И похоже, такая оценка справедлива. Но и 5 лет — довольно большой срок. Чтобы у вас не было проблем, помните, в любом случае срок службы антифриза зависит от режима его эксплуатации.

Не рекомендуется доводить теплоноситель на основе гликолей или глицерина до состояния кипения (температура кипения при атмосферном давлении составляет 106°С-116°С, в зависимости от степени разбавления антифриза водой).

При локальном перегреве теплоносителя до температур, превышающих +170°С, будет происходить термическое разложение этиленгликоля, образование «нагара» на нагревательных элементах, выделение газообразных продуктов разложения и разрушение антикоррозионных присадок.

Поэтому в нагревательных котлах должна быть обеспечена надлежащая циркуляция теплоносителя, и нагревательные элементы в процессе работы должны быть полностью погружены в теплоноситель, чтобы не допускать их перегрева и «пригорания» антифриза.

Другим фактором, влияющим на годность антифриза, является герметичность теплообменной системы. Известно, что этиленгликоль окисляется при контакте с атмосферным воздухом, и процесс окисления ускоряется при повышении температуры — примерно вдвое на каждые 10°С. Продукты окисления этиленгликоля — гликолаты разрушают антикоррозионные присадки и приводят к усилению коррозии. Поэтому необходимо по возможности исключить контакт теплоносителя с воздухом, в частности, применять герметичные расширительные емкости.

Напоследок несколько советов тем, кто решил поменять антифриз в системе отопления. Перед заливкой нового антифриза лучше всего промыть систему. А для быстрого удаления пузырьков воздуха из теплоносителя, после заполнения системы ее выдерживают без давления 2-3 часа.

Требования к идеальному теплоносителю

Теплоноситель обязан переносить максимальное количество тепла за единицу времени с минимальными теплопотерями. Вязкость теплоносителя оказывает серьёзное воздействие на его прокачку в пределах отопительной системы, поэтому чем он менее вязок — тем лучше.

Теплоноситель не должен оказывать коррозийного воздействия на разнообразный конструкционный материал трубопроводов и нагревательных приборов, иначе выбор этих материалов будет строго ограничен. Кроме того, смазывающие способности тех или иных теплоносителей вводят ограничения на конструкционный материал циркуляционных насосов и других механизмов, контактирующих с ними.

С позиции безопасности домочадцев теплоноситель должен иметь определённые (безопасные) характеристики по токсичности, температуре возгорания жидкости и вспышке её паров.

И последнее — жидкость, используемая в качестве теплоносителя, должна быть доступной по цене или же, в случае высокой стоимости, длительное время сохранять свои характеристики и объём во время работы в отопительной системе.

Требования к теплоносителю

Теплоносителем называется жидкость, циркулирующая в отопительной системе. В большинстве случаев это вода. Идеальных теплоносителей не существует – каждый из них эффективен лишь при определенных условиях. Наряду с водой используются антифриз, тосол или смесь компонентов.

Рабочая жидкость должна отвечать ряду следующих требований:

  • эффективное удержание тепла;
  • невысокая вязкость, поскольку это влияет на скорость перемещения по трубам;
  • безопасность для здоровья человека и животных;
  • доступность;
  • разумная стоимость;
  • возможность длительного использования без замены.

Безусловно, вода отвечает этим требованиям лучше любого другого теплоносителя. Однако если температура воздуха в помещении опустится ниже нуля, промерзание отопительной системы будет гарантировано.

Незамерзающая жидкость (антифриз) представляет собой наиболее очевидную альтернативу воде, поскольку кристаллизация ее происходит при очень низких температурах.

Несколько слов о тосоле

Тосол — охлаждающая жидкость на основе этиленгликоля. Мало чем отличается от аналогичных «незамерзаек», однако имеет особую структуру и технологию производства.

Например, в состав антифриза входят присадки на основе солей органических кислот, повышающие антикавитационные, антипенные характеристики и обеспечивающие большую коррозионную безопасность металлических элементов труб.

Тосол получают путем смешивания этиленгликоля с присадками на основе азота, бора, фосфора. Жидкость имеет меньшую температуру кипения (100 °С против 115 °С у антифриза). Тосол быстрее требует замены и оказывает разрушающее влияние на систему.

Однако ввиду дешевизны домовладельцы предпочитают выбирать тосол для отопления жилья, что нередко приводит к перегреву котла, забиванию осадком кранов, фитингов, тройников, выходу из строя насосов.

Смешивать с антифризом тосол нельзя категорически, поскольку в ходе образующейся реакции выпадает осадок, забивающий проточные каналы.

Вывод: тосол – наихудший вариант для защиты отопительной системы от промерзания.

Каким должны быть жидкости-теплоносители?

Прежде, чем изучить параметры теплоносителя того или иного типа, необходимо сформулировать требования, которые предъявляются к теплопередающей жидкости для систем автономного обогрева дома:

  1. Вещество должно эффективно аккумулировать и переносить тепловую энергию. А это значит, что у него должна быть максимально высокая теплоемкость.
  2. У жидкости должен быть «щадящий» химический состав, который не провоцирует активные коррозионные процессы в отопительном оборудовании. Вещество также должно быть нейтральным и для уплотнительных элементов соединительных узлов контура.
  3. Важнейший критерий – широкий температурный диапазон, то есть интервал от температуры замерзания до уровня закипания и перехода в газообразное состояние.
  4. Жидкость не должна содержать солей, которые могут спровоцировать зарастание твердым осадком просвета трубок или теплообменника.
  5. Химический состав теплоносителя должен характеризоваться стабильным состоянием. Качественное вещество не будет разлагаться, расщепляться на другие химические элементы от перепада температур или просто от времени.
  6. Базовые свойства среды, такие как плотность, текучесть, теплоемкость, химическая инертность, должны сохраняться всегда.
  7. Теплоноситель должен быть абсолютно безопасным для жителей частного дома. Следовательно, токсичные испарения недопустимы, должна быть полностью исключена угроза возгорания вещества или формирования взрывоопасной смеси.

Данные требования абсолютно оправданы и логичны, однако ни один теплоноситель для системы отопления загородного дома в полной мере не соответствует всем упомянутым критериям. У каждой жидкости более выражены те или иные характеристики, а другие свойства ухудшены.

Поэтому выбор оптимального теплоносителя для отопления должен основываться на специфике самой системы, конструктивных особенностях здания, режимах предполагаемой эксплуатации контуров обогрева. Это означает, что в каждом конкретном случае, нужно подбирать тот или иной приоритетный критерий выбора оптимальной среды.

Отдельные изготовители котлов отопления в прилагаемой к оборудованию документации указывают рекомендуемые виды теплоносителей, а иногда и конкретную марку. Если не соблюдать рекомендации производителя по используемой жидкости для отопления, то это может привести к прекращению действия гарантийных обязательств на котельное оборудование.

Преимущества и недостатки воды

Вода – самый популярный теплоноситель для системы отопления загородного дома. У 3 из 4 домовладельцев по трубам течет именно вода. Такой выбор легко объясним следующими преимуществами:

Дешевизна и доступность такого вида теплоносителя

  1. Прежде всего, естественно, это повсеместная доступность воды и ее дешевизна даёт возможность осуществлять регулярную заливку, подмес или полную замену жидкости в любое время, сливать теплоноситель из системы для проведения ремонтных или профилактических работ без расходов.
  2. У воды почти нет сходных веществ по теплотехническим свойствам. К этим параметрам можно также причислить отличную теплоемкость при высокой плотности. При значении теплоемкости 4200 Дж/кг×ºС или 1 кал/г×ºС и типичной разнице температур в 20 ºС, один литр воды, остывая, может передать через устройства теплообмена 20 ккал= 83,43 кДж или примерно 23,26 Ватт тепловой энергии. Ни один другой вид теплоносителя к таким значениям не приближается.
  3. Это совершенно безопасная для дома, человека и оборудования нагрева среда. Даже в случае протечки, перегрева и парообразования вода повлечет только выход из строя некоторых элементов системы или бытовые последствия. Данная жидкость не несет возможности получения химического отравления, возникновения риска возгорания или взрыва паров.

Но у обычной воды, используемой в качестве теплоносителя, есть не только хороший перечень преимуществ, но и список негативных сторон ее применения:

  1. Вода очень быстро замерзает, то есть у нее очень высокий уровень температуры, при котором она переходит в кристаллическое состояние. Если зимой оставить воду в неработающей системе хотя бы на сутки, то это приведет к разрывам труб и радиаторов, что выведет всю систему отопления из строя.
  2. Коррозионная агрессивность обычной воды для черных и некоторых цветных металлов. Такая разновидность теплоносителя является очень мощным окислителем, а постоянное присутствие кислорода лишь усиливает коррозийный процессы.
  3. Химический состав воды из природных источников содержит большое количество металлов, солей, сероводорода, минералов и других примесей. Данные соединения очень негативно сказываются на оборудовании – заиливают трубы, образуют отложения, уменьшают уровень теплопроводности батарей. В результате это приводит к лишнему энергопотреблению и снижению эффективности функционирования системы.

Однако некоторые недоставки можно устранить или свести их к минимуму. Если с замерзанием жидкости при температуре ниже нуля градусов ничего сделать нельзя, то повлиять на химический состав воды вполне возможно.

При заливке в систему обычной воды, ее рекомендуется прокипятить, чтобы смягчить ее состав, то есть устранить соли или снизить их концентрацию до безопасных величин. Лучшего результата можно добиться при перегонке жидкости через специализированные фильтры-смягчители, которые основаны на реагентном, ионообменном или электромагнитном принципах действия.

Кроме того, чтобы смягчить жидкость, в нее добавляют специальные реагенты, к примеру, кальцинированную соду или ортофосфат натрия, вводя их в точных пропорциях.

Другой способ избежать всех описанных выше проблем – применять в качестве теплоносителя дистиллированную воду технического качества, которая реализуется по относительно низкой цене в строительных магазинах.

Для чего нужен

Для отопления загородного дома не придумаешь хуже ситуаций, чем закипание или наоборот замерзания воды в трубах. Ситуация вероятная и опасная. Никакие конструктивные решения не способны уберечь трубы от замерзания воды и разрывов, разве что требуя постоянной работы котла, что невозможно. Ведь в загородный дом приезжают на несколько дней во время праздников или на уикенд семьей, никому при этом не хочется постоянно следить за отоплением. Держать систему пустой не вариант, ведь заполнить ее по минусовой температуре сложно. Выход из такой ситуации предполагать использовать антифриз для отопления загородного дома.

Снизить температуру замерзания теплоносителя актуально не только для загородного дома. Отключения электричества или временное отсутствие топлива для котла, будь то дрова, уголь, газ или дизтопливо, может спровоцировать захолаживание дома и замерзание воды в трубах. Это уже означает, что быстро согреть дом не получится, а вместо этого предстоит дорогостоящий ремонт.

Антифриз представляет собой подготовленный раствор с заданными параметрами, основное преимущество которого в низкой температуре замерзания. Используются для этого химические соединения, разведенные в дистиллированной воде:

  • Этиленгликоль;
  • Пропиленгликоль;
  • Солевые растворы;
  • Спирты.

В установленной концентрации они способны снизить температуру замерзания раствора вплоть до -60°С, чего с избытком хватает для устранения проблемы с замерзанием теплоносителя и разрыва труб.

Однако антифризы сами по себе обладают рядом недостатков:

  • Сниженная теплоемкость;
  • Повышенная текучесть;
  • Повышенная плотность;
  • Разложение основного компонента при нагреве до 105-120°С;
  • Агрессивное воздействие на материалы.

Чтобы устранить эти негативные факторы и добавить ряд дополнительных полезных свойств используются различные присадки, способные:

  • Защитить внутреннюю поверхность труб, теплообменников и котла от коррозии и образования накипи;
  • Защитить резиновые и/или паронитовые, тефлоновые уплотнители от разрушения и деформации;
  • Повысить температуру кипения раствора;
  • Повысить теплоемкость;
  • Устранить пенообразование.

Антифризы обладают одним неоспоримым преимуществом – они не замерзают. Однако наряду с этим наделены массой недостатков, которые лишь частично покрываются присадками и вуалируются рядом полезных свойств, полученных от вспомогательных компонентов.

Использовать незамерзайки актуально только в случае реальной опасности снижения температуры в трубах и радиаторах. При этом всё, начиная с мощности котла и заканчивая характеристиками и материалом вентилей и теплообменников, подбирают именно с учетом свойств выбранного антифриза. Даже теплоемкость отличается у незамерзайки от воды на 20-30%.

Есть ли альтернативы?

Длительное отключение электричества зимой само по себе — чрезвычайная ситуация. На этот случай лучше иметь резервный источник питания или альтернативные методы отопления. Рассчитав прогнозируемые траты на обеспечение бесперебойного отопления, можно сравнить их со стоимостью антифриза. Антифриз имеет определенный срок службы, а значит, его придется периодически менять — в среднем раз в три года.

Вода в системе отопления не замерзнет сразу после отключения электричества. У вас будет по крайней мере несколько часов на то, чтобы принять меры. Настоящий форс-мажор — если электричество отключат надолго в ваше отсутствие. Многое зависит от материалов дома, его утепления и утепления труб. Некоторым домам для полного размораживания может потребоваться несколько дней.

Выводы:

  1. Вода намного лучше подходит для систем отопления, чем антифриз. Большинство котлов проектируется и производится для работы с водой в качестве теплоносителя.
  2. При всех преимуществах воды нужно помнить о качестве. Ее нужно специально подготавливать или использовать дистиллированную.
  3. Вид теплоносителя (вода или антифриз) нужно выбирать на стадии проектирования отопительной системы дома.
  4. Если склоняетесь к антифризу, нужно учесть все проблемы, которые он может вызвать. Убедитесь, что агрегаты системы отопления и ее поверхности могут использоваться в контакте с выбранным химическим составом.
  5. В случае долгого отсутствия тепла антифриз спасет только систему отопления, но под ударом окажутся водопровод и канализация. Если у вас нет «плана Б», серьезных убытков не миновать. А если он есть — то и необходимость в использовании антифриза сомнительна.

Можно ли использовать автомобильный тосол в системе отопления?

В системах отопления разрешено использовать только специально разработанный антифриз. Большинство тосолов содержат в своем составе нитриты, амины, фосфатные и силикатные соединения, образующие вредные для человека испарения. Кроме того, они не имеют в своем составе присадок, необходимых для эксплуатации в системах отопления, и могут плохо влиять на металлы и резиновые уплотнители. Тосолы имеют ограниченный ресурс эксплуатации (2-3 года) и не рассчитаны на разбавление вообще, тем более водопроводной водой.

Можно ли использовать антифриз в системах с оцинкованными трубами?

Любой низкозамерзающий теплоноситель на гликолевой основе, в том числе и импортный, не может защищать оцинкованные покрытия. Возможные проблемы: выпадение металлизированной взвеси, а потом и трудно растворимых осадков, так называемых «хлопьев белого цвета».

Поэтому в систему отопления, имеющую в составе оцинкованные трубы, заливать антифриз нельзя!

Можно ли смешивать различные антифризы?

Любые антифризы без предварительной проверки на совместимость смешивать не рекомендуется. В случае если химические основы пакетов присадок антифриза различные, то это может привести к частичному их разрушению и, как следствие, к снижению антикоррозионных свойств и выпадению трудно растворимых осадков. Если Вы не знаете, какой антифриз был залит, необходимо его полностью слить и залить новый.

Какой водой лучше разбавлять антифриз?

В идеальном варианте лучше разбавлять дистиллированной водой, в которой отсутствуют соли кальция и магния. Дело в том, что при разбавлении антифриза жесткой водой может выпасть осадок. Можно также разбавлять водопроводной водой, но с жесткостью до 5 мг-экв/л.

Для информации: вода из скважины, если не предусмотрена система умягчения, может иметь жесткость 20 мг-экв/л. Если определить жесткость затруднительно, рекомендуется предварительно смешать антифриз с водой в нужной пропорции в прозрачной емкости и убедиться в отсутствии осадка.

Полезные советы

Какой же теплоноситель выбрать – воду или антифриз? Это зависит от многих факторов, включая вероятность и длительность отключения электроэнергии частного дома, периодичность проживания, климат и другие.

Например, если электричество работает стабильно, в качестве теплоносителя стоит выбрать воду, а коммуникации просто дополнить источником бесперебойного питания.

Перед заливкой смеси в отопительный контур нужно проверить, не выпадают ли ее компоненты в осадок. Если такое явление имеет место, стоит разбавить ее дистиллированной водой, но не более чем на 50%, иначе антикоррозионные характеристики снизятся. Новый антифриз в систему отопления частного дома заливается каждые 5-6 лет.

Однозначно утверждать о необходимости незамерзающей жидкости нельзя. Антифриз точно не будет лишним, если жильцы покидают дом зимой, а коммуникации оснащены тройниковой системой водоснабжения, где жидкость с наступлением холодов сливается. Однако лучшие советы о совместимости конкретной модели котла с «незамерзайкой» вам даст производитель отопительного прибора.

СНиП 41-02-2003

7.1 В системах централизованного теплоснабжения для отопления, вентиляции и горячего водоснабжения жилых, общественных и производственных зданий в качестве теплоносителя следует, как правило, принимать воду.
Следует также проверять возможность применения воды как теплоносителя для технологических процессов.
Применение для предприятий в качестве единого теплоносителя пара для технологических процессов, отопления, вентиляции и горячего водоснабжения допускается при технико-экономическом обосновании.
7.2 Максимальная расчетная температура сетевой воды на выходе из источника теплоты, в тепловых сетях и приёмниках теплоты устанавливается на основе технико-экономических расчетов.
При наличии в закрытых системах теплоснабжения нагрузки горячего водоснабжения минимальная температура сетевой воды на выходе из источника теплоты и в тепловых сетях должна обеспечивать возможность подогрева воды, поступающей на горячее водоснабжение до нормируемого уровня.
7.3 Температура сетевой воды, возвращаемой на тепловые электростанции с комбинированной выработкой теплоты и электроэнергии, определяется технико-экономическим расчетом. Температура сетевой воды, возвращаемой к котельным, не регламентируется.
7.4 При расчете графиков температур сетевой воды в системах централизованного теплоснабжения начало и конец отопительного периода при среднесуточной температуре наружного воздуха принимаются:
8 °С в районах с расчетной температурой наружного воздуха для проектирования отопления до минус 30 °С и усредненной расчетной температурой внутреннего воздуха отапливаемых зданий 18 °С;
10 °С в районах с расчетной температурой наружного воздуха для проектирования отопления ниже минус 30 °С и усредненной расчетной температурой внутреннего воздуха отапливаемых зданий 20 °С.
Усредненная расчетная температура внутреннего воздуха отапливаемых производственных зданий 16 °С.
7.5 При отсутствии у приёмников теплоты в системах отопления и вентиляции автоматических индивидуальных устройств регулирования температуры внутри помещений следует применять в тепловых сетях регулирование температуры теплоносителя:
центральное качественное по нагрузке отопления, по совместной нагрузке отопления, вентиляции и горячего водоснабжения — путем изменения на источнике теплоты температуры теплоносителя в зависимости от температуры наружного воздуха;
центральное качественно-количественное по совместной нагрузке отопления, вентиляции и горячего водоснабжения — путем регулирования на источнике теплоты как температуры, так и расхода сетевой воды.
Центральное качественно-количественное регулирование на источнике теплоты может быть дополнено групповым количественным регулированием на тепловых пунктах преимущественно в переходный период отопительного сезона, начиная от точки излома температурного графика с учетом схем присоединения отопительных, вентиляционных установок и горячего водоснабжения, колебаний давления в системе теплоснабжения, наличия и мест размещения баков-аккумуляторов, теплоаккумулирующей способности зданий и сооружений.
7.6 При центральном качественно-количественном регулировании отпуска теплоты для подогрева воды в системах горячего водоснабжения потребителей температура воды в подающем трубопроводе должна быть:
для закрытых систем теплоснабжения — не менее 70 °С;
для открытых систем теплоснабжения — не менее 60 °С.
При центральном качественно-количественном регулировании по совместной нагрузке отопления, вентиляции и горячего водоснабжения точка излома графика температур воды в подающем и обратном трубопроводах должна приниматься при температуре наружного воздуха, соответствующей точке излома графика регулирования по нагрузке отопления.
7.7 В системах теплоснабжения, при наличии у потребителя теплоты в системах отопления и вентиляции индивидуальных устройств регулирования температуры воздуха внутри помещений количеством протекающей через приёмники сетевой воды, следует применять центральное качественно-количественное регулирование, дополненное групповым количественным регулированием на тепловых пунктах с целью уменьшения колебаний гидравлических и тепловых режимов в конкретных квартальных (микрорайонных) системах в пределах, обеспечивающих качество и устойчивость теплоснабжения.
7.8 Для раздельных водяных тепловых сетей от одного источника теплоты к предприятиям и жилым районам допускается предусматривать разные графики температур теплоносителя.
7.9 В зданиях общественного и производственного назначения, для которых возможно снижение температуры воздуха в ночное и нерабочее время, следует предусматривать регулирование температуры или расхода теплоносителя в тепловых пунктах.
7.10 В жилых и общественных зданиях при отсутствии у отопительных приборов терморегулирующих клапанов следует предусматривать автоматическое регулирование по температурному графику для поддержания средней по зданию температуры внутреннего воздуха.
7.11 Не допускается применение для тепловых сетей графиков регулирования отпуска теплоты «со срезкой» по температурам.

ПРАВИЛА КОММЕРЧЕСКОГО УЧЕТА ТЕПЛОВОЙ ЭНЕРГИИ, ТЕПЛОНОСИТЕЛЯ

III. Характеристики тепловой энергии, теплоносителя,
подлежащие измерению в целях их коммерческого учета
и контроля качества теплоснабжения

94. Коммерческому учету тепловой энергии, теплоносителя подлежат количество тепловой энергии, используемой в том числе в целях горячего водоснабжения, масса (объем) теплоносителя, а также значения показателей качества тепловой энергии при ее отпуске, передаче и потреблении.
95. В целях коммерческого учета тепловой энергии, теплоносителя и контроля качества теплоснабжения осуществляется измерение:
а) времени работы приборов узла учета в штатном и нештатном режимах;
б) давления в подающем и обратном трубопроводах;
в) температуры теплоносителя в подающем и обратном трубопроводах (температура обратной воды в соответствии с температурным графиком);
г) расхода теплоносителя в подающем и обратном трубопроводах;
д) расхода теплоносителя в системе отопления и горячего водоснабжения, в том числе максимального часового расхода;
е) расхода теплоносителя, израсходованного на подпитку системы теплоснабжения, при наличии подпиточного трубопровода.
96. В целях коммерческого учета тепловой энергии, теплоносителя и контроля качества теплоснабжения на источнике тепловой энергии при использовании в качестве теплоносителя пара осуществляется измерение:
а) времени работы приборов узла учета в штатном и нештатном режимах;
б) отпущенной тепловой энергии за час, сутки и расчетный период;
в) массы (объема) отпущенного пара и возвращенного источнику теплоты конденсата за час, сутки и расчетный период;
г) температуры пара, конденсата и холодной воды за час и за сутки с последующим определением их средневзвешенных значений;
д) давления пара, конденсата за час и за сутки с последующим определением их средневзвешенных значений.
97. В открытых и закрытых системах теплопотребления на узле учета тепловой энергии и теплоносителя с помощью прибора (приборов) определяются:
а) масса (объем) теплоносителя, полученного по подающему трубопроводу и возвращенного по обратному трубопроводу;
б) масса (объем) теплоносителя, полученного по подающему трубопроводу и возвращенного по обратному трубопроводу за каждый час;
в) среднечасовая и среднесуточная температура теплоносителя в подающем и обратном трубопроводах узла учета.
98. В открытых и закрытых системах теплопотребления, суммарная тепловая нагрузка которых не превышает 0,1 Гкал/ч, на узле учета с помощью приборов определяется только время работы приборов узла учета, масса (объем) полученного и возвращенного теплоносителя, а также масса (объем) теплоносителя, расходуемого на подпитку.
99. В системах теплопотребления, подключенных по независимой схеме, дополнительно определяется масса (объем) теплоносителя, расходуемого на подпитку.
100. В открытых системах теплопотребления дополнительно определяются:
а) масса (объем) теплоносителя, израсходованного на водоразбор в системах горячего водоснабжения;
б) среднечасовое давление теплоносителя в подающем и обратном трубопроводах узла учета.
101. Среднечасовые и среднесуточные значения параметров теплоносителя определяются на основании показаний приборов, регистрирующих параметры теплоносителя.
102. В паровых системах теплопотребления на узле учета с помощью приборов определяются:
а) масса (объем) полученного пара;
б) масса (объем) возвращенного конденсата;
в) масса (объем) получаемого пара за каждый час;
г) среднечасовые значения температуры и давления пара;
д) среднечасовая температура возвращаемого конденсата.
103. Среднечасовые значения параметров теплоносителя определяются на основании показаний приборов, регистрирующих эти параметры.
104. В системах теплопотребления, подключенных к тепловым сетям по независимой схеме, определяется масса (объем) конденсата, расходуемого на подпитку.

_____________________________________

При заливке концентрата Диксис-65, или другого состава в виде концентрата, смешивайте его с водой только в отдельной емкости. И лишь за тем, уже готовой, равномерной смесью заполняйте систему.
Смешивание антифриза с водой внутри системы может неожиданно усложнить ее нормальную работу.
Результат неправильного смешивания:
— неравномерный прогрев отопительных приборов, причем, некоторые приборы вообще не греют в связи с разделением воды и антифриза;
— сбои в работе циркуляционного насоса и даже выход его из строя;
— вспенивание внутри системы приводит к вынужденному полному ее опорожнению, повторной промывке и повторного заполнения;
— НИ В КОЕМ СЛУЧАЕ НЕ РАЗМЕШИВАЙТЕ УЖЕ ГОТОВЫЕ к заливке Диксис-30 и тем более DIXIS TOP. В этом случае пена так забьет систему, что ее будет сложно даже повторно промыть
При использовании дорогостоящей техники такие вещи вообще недопустимы!
Если уже поздно и Вы залили поочередно жидкость, а потом воду — НЕ ВКЛЮЧАЙТЕ ЦИРКУЛЯЦИОННЫЙ НАСОС НА МАКСИМАЛЬНУЮ скорость(чтоб быстрее перемешалось). Пусть все остается как есть. Терпите. Периодически открывайте воздухоудалители на радиаторах. Необходимо время, чтобы все премешалось.
В случае с гравитационными системами(самотек) и дела обстоят сложнее, и времени на перемешивание уходит намного больше. Вот почему почти во всех самотечных системах мы устанавливаем через байпасс циркуляционный насос. Терпите и ждите пока перемешается.
Концентрат Диксис-65 обходится гораздо дешевле в разбавленном виде, чем Диксис-30 и тем более DIXIS TOP . Но на практике, если Ваш специалист имеет мало опыта, используйте только готовые растворы, предложенные заводом-изготовителем или обращайтесь к нам.

Антифриз «DIXIS-65» широко применяется в различных системах – охлаждения, отопления и кондиционирования – не только в промышленных, но и жилых помещениях. Приоритетным назначением этого антифриза является защита системы от так называемого «размораживания» в условиях низкой температуры. Кроме этого антифриз «DIXIS-65» очень хорошо справляется с функцией защиты оборудования от процессов коррозии и начала образования накипи. Отличительная особенность антифриза «DIXIS-65» – возможность применять его как в исходном, так и в разбавленном состоянии.
В исходном виде этот теплоноситель можно применять в низкотемпературных климатических районах, например, регионы Крайнего Севера. В разбавленном состоянии «DIXIS-65» можно использовать в регионах с умеренным климатом, где температурные показатели не такие низкие. Разбавив этот антифриз с водой в соотношении 5:1, получаем теплоноситель с температурой начала кристаллизации, равной минус 40°С. Соотношения 2:1 и 1:1 позволяют получить антифриз с показателем начала кристаллизации, равным минус 30°С и и минус 20 °С соответственно. Антифриз «DIXIS-65» представляет собой однородную прозрачную жидкость с желто-зеленоватым цветом без механических примесей.

К чему приведет использование в системе отопления неразбавленного антифриза на -65°C?

Теплообменник котла начнет перегреваться из-за недостаточного теплосъема. При длительном перегреве начинается термическое разложение присадок и самого гликоля. Теплоноситель становится темно-коричневого цвета, и образуются осадки. Медный теплообменник настенного котла начинает шуметь и вибрировать от локальных закипаний теплоносителя. Хуже всего, что внутри теплообменника образуется нагар темного цвета, который становится причиной еще большего перегрева. В результате потребуется замена теплообменника.

Мы разбавили антифриз до температуры -20°C, а что будет, если температура упадет ниже?

Антифриз, разбавленный на -20°C, защитит выключенную систему отопления от разрушения вплоть до температуры -60°С. При падении температуры в помещении ниже -20°С, что практически нереально в нашем климате, антифриз начинает загустевать и превращаться в желеобразную массу. При повышении температуры снова становится жидкостью без потери своих качеств.

Как долго можно использовать антифриз?

Нормальный срок службы антифриза до 5 лет. По истечении этого срока его необходимо полностью заменить. Он начинает терять свои свойства. Начинается разбалансировка присадок и проявление агрессивных свойств гликолевого раствора.

Рубрики: Статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *