Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.

В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.

Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.

Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.

Необходимые нормативные документы

Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:

Скачать СНиПы и СП вы можете , ГОСТ — , а Пособие — .

Рассчитываемые параметры

В процессе выполнения теплотехнического расчета определяют:

  • теплотехнические характеристики строительных материалов ограждающих конструкций;
  • приведённое сопротивление теплопередачи;
  • соответствие этого приведённого сопротивления нормативному значению.

Дальше будут приведен пример теплотехнического расчета без воздушной прослойки.

Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки

Исходные данные

1. Климат местности и микроклимат помещения

Район строительства: г. Нижний Новгород.

Назначение здания: жилое.

Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна — 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).

Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).

Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);

Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);

Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).

2. Конструкция стены

Стена состоит из следующих слоев:

  • Кирпич декоративный (бессер) толщиной 90 мм;
  • утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком «Х», так как она будет найдена в процессе расчета;
  • силикатный кирпич толщиной 250 мм;
  • штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.

3. Теплофизические характеристики материалов

Значения характеристик материалов сведены в таблицу.

Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.

Расчет

4. Определение толщины утеплителя

Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.

4.1. Определение нормы тепловой защиты по условию энергосбережения

Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:

Dd = (tint — tht)zht = (20 + 4,1)215 = 5182°С×сут

Примечание: также градусо-сутки имеют обозначение — ГСОП.

Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:

Rreq= a×Dd + b = 0,00035 × 5182 + 1,4 = 3,214м2×°С/Вт,

где: Dd — градусо-сутки отопительного периода в Нижнем Новгороде,

4.1. Определение нормы тепловой защиты по условию санитарии

В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).

Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):

где: n = 1 — коэффициент, принятый по таблице 6 для наружной стены;

tint = 20°С — значение из исходных данных;

text = -31°С — значение из исходных данных;

Δtn = 4°С — нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 в данном случае для наружных стен жилых зданий;

αint = 8,7 Вт/(м2×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 для наружных стен.

4.3. Норма тепловой защиты

Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0=3,214м2×°С/Вт.

5. Определение толщины утеплителя

Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:

где: δi- толщина слоя, мм;

λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м2×°С/Вт.

3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м2×°С/Вт.

4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина «Теплопотери здания. Справочное пособие»):

где: Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 для наружных стен;

ΣRi = 0,094 + 0,287 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт

Толщина утеплителя равна (формула 5,7 ):

где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 ):

где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.

Из полученного результата можно сделать вывод, что

R0 = 3,503м2×°С/Вт > Rтр0 = 3,214м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.

Точка росы

— это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу. Этот параметр зависит от давления воздуха.

  • По возможности избегайте образования точки росы. А, если это невозможно, то постарайтесь сдвинуть ее к внешним слоям и обеспечте необходимую вентиляцию этих увлажняемых слоев.
  • Причина №1. Высокая паропрозрачность внутренних слоев конструкции позволяют создать большое давление водянных паров в прохладных и холодных слоях конструкции, что, как я уже писал, приведет к повышенной конденсации.

    Решение проблемы точки росы

    Добавьте слабо проницаемых слоев внутри (пароизолцию) и/или добавьте вент зазор снаружи. Эта мера позволит сдержать поток водяных паров сквозь стены. Но не стоит переусердствовать т.к запертые пары внутри комнаты будут копиться и это приведет к ухудшении качества воздуха внутри помещений.

    Если условия эксплуатации здания особенно суровые (-20 и ниже), то стоит рассмотреть возможность принудительного поступления в помещение подогретого воздуха с помощью теплообменников или нагревателей. Это позволит использовать герметичные пароизоляционные материалы без риска испортить микроклимат в доме.

    Каталог материалов

    Как выполняется расчет теплопотерь?

    Расчет теплопотерь определяется на основании температуры внутреннего воздуха, температуры внутренней поверхности ограждающей конструкции и температуры уличного воздуха.

    Температура внутри стен меняется линейно. Угол наклона графика зависит от значения термического сопротивления материала в разных его слоях.

    Усредненное значение сопротивления теплопередачи внутри здания принимаем Ri = 0,13 м2 К / Вт. ГОСТ 8.524-85 и DIN 4108

    Термическое сопротивление остальных слоев Re соответствует перепаду температур между внутренней поверхностью стены и уличным воздухом. (Т поверхности стены — T за пределами здания ) dTe.

    Затем по следующей формуле:

    Ri / dTi = Re / dTe

    находим Re:

    Re = Ri * dTe / dTi

    Общее тепловое сопротивление R = Re + Ri

    R = Ri (1 + dTe / dTi)

    И, наконец, значение теплопотерь

    ТП = 1 / R

    Пример

    Температура в помещении: 20 ° C
    на поверхность стены: 18 ° C
    температура окружающей среды: -10 ° C

    dТ = 2 ° C
    DTE = 28 ° C
    Ri = 0,13 м2 К / Вт

    dТi = 2 ° C
    dTe = 28 ° C
    Ri = 0,13 м2 К / Вт
    R = R (1 + dTe / dТi) = 1,95 м2 К / Вт

    ТП = 0,5 Вт / м2 K

    Кроме теплопотерь отображаются зоны возможной конденсации .

  • Черный график показывает падение/увеличение температуры внутри ограждающей конструкции в градусах.
  • Синий график — температура точки росы. Если этот график соприкасается с графиком температуры, то эти зоны называются зонами возможной конденсации (помечены голубым). Если во всех точках графика температура точки росы ниже температуры материала, то конденсата/росы не будет.
  • Влияние воздушной прослойки

    В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

    Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

    а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

    б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).

    Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.

    Теплотехнические характеристики ограждающих конструкций зданий. Ч. 2. Российские принципы нормирования

    Heat Engineering Characteristics of Building Envelopes. Part 2. Russian Rating Principles

    Описание:

    Описав методы расчета и принципы нормирования теплотехнических характеристик наружных ограждающих конструкций зданий в европейских странах на примере Финляндии (см. статью в журнале «Энергосбережение» № 7, 2017), перейдем к оценке таковых в России. Также покажем различие методов, принятых в Российской Федерации и странах Европейского союза.

    Ключевые слова: проектирование, здания, энергосбережение, тепловая защита, теплоизоляция, нормативные требования, энергоэффективность, методы расчета

    А. С. Горшков, канд. техн. наук, директор учебно-научного центра «Мониторинг и реабилитация природных систем» ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»

    Описав1 методы расчета и принципы нормирования теплотехнических характеристик наружных ограждающих конструкций зданий в европейских странах на примере Финляндии, перейдем к оценке таковых в России. Также покажем различие методов, принятых в Российской Федерации и странах Европейского союза.

    Российской Федерации в части нормирования уровня теплоизоляции наружных ограждающих конструкций действует СП 50.13330.2012 «Тепловая защита зданий. Актуализированная редакция СНиП 23-02–2003» (далее – СП 50.13330).

    Теплозащитная оболочка здания, согласно требованиям СП 50.13330 (п. 5.1), должна отвечать следующим требованиям:

    • приведенные сопротивления теплопередаче отдельных ограждающих конструкций должны быть не меньше нормируемых значений (поэлементные требования);
    • удельная теплозащитная характеристика здания должна быть не больше нормируемого значения (комплексное требование);
    • температура на внутренних поверхностях ограждающих конструкций должна быть не ниже минимально допустимых значений (санитарно-гигиеническое требование).

    Фактором, оказывающим наибольшее влияние на потребление в зданиях тепловой энергии на отопление, является обеспечение поэлементных требований (требований первой группы), которые аналитически можно выразить в виде условия (8) (см. Формулы).

    При этом нормируемое значение приведенного сопротивления теплопередаче ограждающей конструкции следует определять по формуле (9), где коэффициент mp, учитывающий особенности региона строительства, принимается равным 1. При этом допускается снижение значения коэффициента mp в случае, если выполняется расчет удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания. Значения коэффициента mp при этом должны быть не менее:

    • 0,63 для стен;
    • 0,95 для светопрозрачных конструкций;
    • 0,80 для остальных ограждающих конструкций.

    По сути, с введением коэффициента mp копируется принцип нормирования, заложенный в СНиП 23-02–2003 «Тепловая защита зданий».

    Изменение в России требований к уровню тепловой защиты зданий

    В табл. 3 СП 50.13330 приводятся базовые значения требуемого сопротивления теплопередаче ограждающих конструкций. Табл. 3 полностью копирует требования, отраженные в табл. 4 СНиП 23-02–2003. Несмотря на практически полную идентичность табл. 4 СНиП 23-02–2003 и табл. 3 СП 50.13330, нормируемые требования к уровню тепловой защиты в СП 50.13330 оказались ниже аналогичных требований СНиП 23-02–2003.

    Различие обусловлено тем, что вместе с актуализацией СНиП 23-02–2003 был актуализирован и СНиП 23-01–99* «Строительная климатология». В СНиП 23-02–2003 при определении климатических параметров отопительного периода последние принимаются по СНиП 23-01–99*, в СП 50.13330 – по СП 131.13330.2012 «Строительная климатология. Актуализированная редакция СНиП 23-01–99*» (далее – СП 131.13330).

    Согласно СП 131.13330, средняя температура наружного воздуха за отопительный период для жилых зданий повысилась до –2,2 0С (в СНиП 23-01–99* указано значение -3,1 0С), а продолжительность отопительного периода сократилась до 205 сут. (в СНиП 23-01–99* она принималась равной 214 сут.). Неизменной в формуле расчета градусо-суток отопительного периода (ГСОП) осталась лишь принимаемая для жилых зданий температура внутреннего воздуха, которая как была2, так и осталась равной 20 0С.

    В результате изменений расчетных климатических параметров изменилось расчетное значение ГСОП для жилых зданий, проектируемых в Москве, которое до введения СП 50.13330 принималось равным 4 943 0С•сут. (СНиП 23-01–99*), а с 1 июня 2015 года согласно СП 131.13330 принимается равным 4 551 0С•сут.

    Ввиду изменения ГСОП изменились и нормативные требования к уровню нормируемого сопротивления теплопередаче (табл. 4). Как следует из табл. 4, современные нормативные требования к уровню тепловой защиты оказались незначительно, но ниже требований 2003 года (т. е. СНиП 23-02–2003) и 1995 года (табл. 1 б СНиП II 3–79* «Строительная теплотехника»).

    Таблица 4
    Требуемые для климатических условий города Москвы значения приведенного сопротивления теплопередаче согласно СНиП 23-02-2003 и СП 50.13330
    Тип наружной
    ограждающей
    конструкции
    Требуемые значения приведенного сопротивления теплопередаче RтрО, м2•0С/Вт, рассчитанные по стандартам:
    СНиП 23-02-2003*
    RтрСНИП
    СП 50.13330**
    RтрСП,
    Наружные стены 3,13 2,99
    Окна и балконные
    двери
    0,52 0,49
    Входные
    наружные
    двери
    0,83 0,78
    Совмещенное
    покрытие
    4,67 4,48
    Перекрытия над
    проездами и под
    эркерами
    4,67 4,48
    Перекрытие над неотапливаемым
    подвалом
    (подпольем)
    4,12 3,95

    * Требуемые значения сопротивлений теплопередаче рассчитаны по ГСОП согласно данным СНиП 23-01-99*.
    **Требуемые значения сопротивлений теплопередаче приняты по ГСОП согласно данным СП 131.13330.

    Нормативные требования к уровню тепловой защиты основных типов ограждающих конструкций, рассчитанные по формуле (9) с учетом понижающего коэффициента mp для климатических условий Москвы, представлены в табл. 5.

    Таблица 5
    значения приведенного сопротивления теплопередаче, требуемые для климатических условий Москвы, согласно СНиП 23-02-2003 и СП 50.13330
    Тип наружной
    ограждающей
    конструкции
    Требуемые значения приведенного сопротивления теплопередаче RтрО, м2•0С/Вт, рассчитанные по стандартам:
    СНиП 23-02-2003
    RтрСНИП
    СП 50.13330
    RтрСП,
    Наружные
    стены
    1,97 1,88
    Окна и балконные
    двери
    0,49 0,47
    Входные
    наружные двери
    0,83 0,78
    Совмещенное
    покрытие
    3,74 3,58
    Перекрытие над неотапливаемым подвалом
    (подпольем)
    3,30 3,16

    Сравнение требований к уровню теплоизоляции в Финляндии и Москве

    Безусловно, в связи с тем, что расчетное значение приведенного сопротивления теплопередаче должно быть равно или выше нормируемого значения, небольшое снижение нормируемых показателей не должно оказать существенного влияния на выбор толщины теплоизоляционного слоя в составе наружных ограждающих конструкций. Однако если сравнить тренд изменения нормативных требований к уровню теплоизоляции ограждающих конструкций зданий, принятый в Финляндии3 и России (на примере Москвы), сравнение оказывается не в пользу последней.

    Сравнительный анализ минимально допустимых нормативных требований к уровню теплоизоляции ограждающих конструкций зданий, проектируемых на территории Финляндии и Москвы, представлен в табл. 6, из которой очевидно, что различия в уровне теплоизоляции ограждающих конструкций, принятые в Финляндии и России, существенны.

    Таблица 6
    Нормативные требования к ограждающим конструкциям по нормам Финляндии и России (применительно к климатическим условиям Москвы)
    Тип наружной ограждающей конструкции

    Нормативные требования к ограждающим конструкциям, м2• 0С/Вт

    Для Финляндии*

    Для Москвы (СП 50.13330)

    Наружные стены

    5,88

    1,88

    Окна и балконные двери

    1,0

    0,47

    Входные наружные двери

    1,0

    0,78

    Совмещенное покрытие

    11,1

    3,58

    Перекрытие над неотапливаемым подвалом (подпольем)

    6,25

    3,16

    *Согласно требованиям National Building Code of Finland, Part D3. Значения требуемых сопротивлений теплопередаче для условий Финляндии рассчитаны на основании данных таблицы 2 (из ч.1) по формуле U =1/Rt

    Трансмиссионные затраты тепловой энергии

    В работах выполнено сравнение трансмиссионных затрат тепловой энергии через оболочку жилого многоквартирного здания при нормировании уровня теплоизоляции ограждающих конструкций по стандартам Финляндии и России. Показано, что трансмиссионные потери тепловой энергии в здании, проектируемом по нормам России, окажутся приблизительно в 2 раза выше по сравнению с потерями в том же здании, проектируемом по нормам Финляндии. И это при соблюдении одних и тех же требований к параметрам микроклимата внутреннего воздуха, при одинаковых площадях здания, его форме, ориентации фасадов по сторонам света, расчетном количестве жителей, величине бытовых и солнечных теплопоступлений, составе инженерного оборудования, кратности воздухообмена помещений.

    Различия в методических подходах России и Финляндии

    Следует, однако, иметь в виду различия в методическом подходе при расчете сопротивления теплопередаче по стандартам Финляндии и России. В России нормируется так называемое приведенное сопротивление теплопередаче, которое рассчитывается по формуле (10). Данная формула учитывает потери не только по глади ограждающей конструкции, но также через линейные и точечные неоднородности, имеющие место в ее составе. С позиции подхода, принятого в СП 50.133330, в Финляндии нормируется условное сопротивление теплопередаче. Поэтому сравнивать две эти величины (условное и приведенное сопротивление теплопередаче) в общем случае некорректно. Приведенное сопротивление теплопередаче зависит не только от толщины слоя теплоизоляции, но и от теплопроводных включений (их состава, свойств, количества, протяженности).

    Однако при обязательном учете параметров коррекции при расчете коэффициента теплопередачи по ISO 69464 его расчетное значение нельзя в полной мере считать условным. Кроме того, если сравнить формулы (6)5 и (10), то, по сути, приведенное сопротивление теплопередаче является величиной, обратной трансмиссионному коэффициенту теплопередачи здания Hd, рассчитываемому на основании стандарта ISO 137896.

    Главное отличие российского и европейского подходов состоит в том, что по нормам ЕС толщина слоя теплоизоляции подбирается на основании простых аналитических выражений, а трансмиссионные потери рассчитываются с учетом теплопроводных включений, т. е. требуемая толщина слоя теплоизоляции не зависит от состава и свойств теплопроводных включений. В российском подходе нормируется приведенное сопротивление теплопередаче, которое одновременно учитывает и толщину слоя теплоизоляции, и влияние теплопроводных включений.

    Минимальная толщина слоя минераловатной теплоизоляции в наружных стенах зданий, проектируемых в Финляндии, составляет 250 мм, а чаще доходит до 350 мм. В Москве толщина слоя теплоизоляции из минеральной ваты 200 мм является максимальной, а чаще всего не превышает 150 мм. Это к вопросу о том, какой подход к нормированию является более корректным с точки зрения минимизации потерь тепловой энергии через ограждающие конструкции. Трансмиссионные потери тепловой энергии через ограждающие конструкции при одном и том же конструктивном решении наружных ограждений, но при большей толщине слоя теплоизоляции окажутся однозначно меньше.

    Теплопроводные включения оказывают существенное влияние на потери тепловой энергии через оболочку здания. Их неполный учет может привести к различию расчетных и фактических потерь тепловой энергии через оболочку здания и, как следствие, сказаться на расхождении фактических и расчетных значений удельного энергопотребления введенного в эксплуатацию нового здания.

    В работе показано, что расчетный коэффициент теплотехнической однородности r наружной ограждающей конструкции, выполненной кладкой из газобетонных блоков (толщиной 375 мм) с облицовочным каменным слоем из глиняного кирпича (120 мм), составляет 0,61. Соответственно, при условном сопротивлении теплопередаче такой стены 2,99 м2• 0С/Вт, приведенное сопротивление теплопередаче рассматриваемой конструкции наружной стены составит 0,61×2,99=1,81 м2• 0С/Вт. В работе для аналогичного конструктивного решения получено еще более низкое расчетное значение коэффициента теплотехнической однородности r = 0,48. В результате использования при строительстве блоков со сколами и выбоинами и некачественного выполнения строительно-монтажных работ по возведению ограждающих конструкций, коэффициент теплотехнической однородности может оказаться еще ниже расчетного (проектного). В работах показано, что область применения наружных стен, выполненных кладкой из газобетонных блоков без дополнительного утепления теплоизоляционными изделиями, ограничена ГСОП = 4 200 град·сут. При этом такие стены продолжают возводиться не только в Москве и Санкт-Петербурге (с ГСОП около 4 500 °С·сут), но и в более холодных районах Российской Федерации.

    Как уже было показано, в СП 50.133330 приведенное сопротивление теплопередаче наружных ограждающих конструкций рассчитывается по формуле (10), которая учитывает не только потери тепловой энергии по глади наружных стен (∑aiUi), но также через линейные (∑1jψj) и точечные (∑nkχk) неоднородности. По сравнению с СНиП 23-02-2003 в СП 50.133330 методика расчета приведенного сопротивления теплопередаче является более качественной, но неполной: отсутствуют требования к выбору расчетных участков (фрагментов) ограждающих конструкций, граничных условий, трактовке результатов расчета, программному обеспечению.

    Ввиду этого пример расчета приведенного сопротивления теплопередаче фасада жилого здания, представленный в СП 50.133330 (Приложение Н) не может быть количественно проанализирован. Температурные поля рассматриваемых в СП 50.133330 (Приложение Н) узлов конструкции фасада неоднозначно трактуемы и не показательны. Для несветопрозрачных ограждающих конструкций пример расчета представлен только для фасада и только одного вида (стена с теплоизоляционной фасадной системой с тонким штукатурным слоем).

    В дополнение к СП 50.13330 были разработаны для добровольного применения СП 230.1325800.2015 Конструкции ограждающие зданий. Характеристики теплотехнических неоднородностей (далее – СП 230.1325800), которые содержат значительно больше узлов и конструктивных решений. Однако, многие конструктивные решения и узлы в СП 230.1325800 также отсутствуют. Например, в нем нет таблиц расчетных значений удельных потерь теплоты через кронштейны вентилируемых фасадов. При том, что данный тип наружных стен является одним из наиболее распространенных вариантов. Кроме того, в СП 230.1325800 значительное внимание уделено наружным стенам и практически не затрагиваются иные ограждающие конструкции (покрытия, чердачные перекрытия, перекрытия над неотапливаемыми подвалами и техподпольями и т. д.).

    В реальной практике проектирования СП 230.1325800 получил даже большее применение, чем СП 50.13330. С одной стороны это свидетельствует о более детальной проработке вопроса по учету теплопроводных включений. С другой стороны, отсутствие в СП 230.1325800 значительного количества узлов с теплопроводными включениями ограничивает область действия и этого стандарта. Кроме того, постоянное совершенствование технических решений и применяемых строительных материалов при отсутствии проработанных в СП 230.1325800 узлов ограничивает их область применения или замедляет их использование в строительстве. По этой причине включение новых технических решений и узлов строительных конструкций делает процесс совершенствования нормативной базы по данному вопросу бесконечным.

    Недостаточная проработка технических решений и неполный учет влияния потерь тепла через теплопроводные включения (неоднородности в составе ограждающих конструкций), могут приводить к несоответствию расчетных (проектных) и фактических значений сопротивлений теплопередаче ограждающих конструкций. А следовательно, к расхождению расчетных (проектных) и фактических значений удельного энергопотребления зданий, т.к. в распределении потерь тепловой энергии на отопление трансмиссионные потери тепла через оболочку здания составляют более 50 %.

    Анализ сравнения европейского и российского подходов

    Методический подход к нормированию и проектированию наружной оболочки зданий, принятый в стандартах стран Европейского союза, представляется более целостным и правильным.

    Нормативные требования к уровню теплоизоляции наружных ограждающих конструкций в европейских странах, сопоставимых по климату с Москвой, оказываются существенно выше. Однако сравнивать их напрямую некорректно, поскольку:

    • в странах ЕС нормируется коэффициент теплопередачи, численное значение которого учитывает некоторые параметры коррекции, но рассчитывается в основном без учета их влияния;
    • в России нормируется так называемое приведенное сопротивление теплопередаче, численное значение которого зависит не только от толщины слоя теплоизоляции, но и от состава теплопроводных включений.

    По нормам ЕС толщина слоя теплоизоляции подбирается на основании простых аналитических выражений, а трансмиссионные потери рассчитываются с учетом теплопроводных включений, т. е. требуемая толщина слоя теплоизоляции не зависит от состава и свойств теплопроводных включений. В российском подходе нормируется приведенное сопротивление теплопередаче, которое одновременно учитывает и толщину слоя теплоизоляции, и влияние теплопроводных включений.

    Различие подходов приводит к тому, что в зданиях, проектируемых в Финляндии, толщина слоя теплоизоляции (например, минераловатной) в составе ограждающих конструкций оказывается примерно в 2 раза больше, чем в России, при сопоставимых климатологических условиях проектирования и эксплуатации зданий. Большое влияние на соответствие зданий требованиям по тепловой защите оказывают теплопроводные включения в составе ограждающих конструкций. Неполный учет теплопроводных включений и потерь тепловой энергии через них может привести к различию расчетных и фактических потерь тепловой энергии через оболочку здания и, как следствие, сказаться на расхождении фактических и расчетных значений удельного энергопотребления введенного в эксплуатацию нового здания.

    Методика расчета приведенного сопротивления теплопередаче, изложенная в СП 50.133330, проработана недостаточно корректно и точно.

    В своде правил СП 230.1325800 приведены далеко не все конструктивные узлы и варианты теплопроводных включений. В частности, отсутствуют таблицы расчетных значений удельных потерь теплоты через кронштейны вентилируемых фасадов, – одного из наиболее распространенных типов фасадов, проектируемых и применяемых при строительстве зданий на территории Российской Федерации. Совсем не рассмотрены таблицы расчетных значений удельных потерь теплоты через неоднородности в составе кровельных конструкций и чердачных перекрытий. Оболочка зданий не ограничивается наружными стенами. Постоянное совершенствование технических решений и применяемых строительных материалов при отсутствии проработанных в СП 230.1325800 узлов строительных конструкций ограничивает область применения инновационных технических решений и материалов или замедляет их использование в строительстве.

    Литература

    1 См. статью «Теплотехнические характеристики ограждающих конструкций зданий. Ч. 1. Европейский подход и метод расчета» в журнале «Энергосбере-
    жение» № 7, 2017.

    2 Согласно ГОСТ 30494–2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».

    3 Сравните данные табл. 2 в первой части статьи (журнал «Энергосбережение», № 7) и данные табл. 4 и 5 настоящей статьи.

    Рубрики: Статьи

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *