От силы тока в цепи зависит величина воздействия, которое ток может оказывать на проводник, будь то тепловое, химическое или магнитное действие тока. То есть, регулируя силу тока, можно управлять его воздействием. Электрический ток, в свою очередь – это упорядоченное движение частиц под действием электрического поля.

Зависимость силы тока и напряжения

Очевидно, что чем сильнее поле действует на частицы, тем больше будет сила тока в цепи. Электрическое поле характеризуется величиной, называемой напряжением. Следовательно, мы приходит к выводу, что сила тока зависит от напряжения.

И действительно, опытным путем удалось установить, что сила тока связана с напряжением прямо пропорционально. В случаях, когда изменяли величину напряжения в цепи, не меняя всех остальных параметров, сила тока возрастала или уменьшалась во столько же раз, во сколько меняли напряжение.

Связь с сопротивлением

Однако любая цепь или участок цепи характеризуются еще одной немаловажной величиной, называемой сопротивлением электрическому току. Сопротивление связано с силой тока обратно пропорционально. Если на каком-либо участке цепи изменить величину сопротивления, не меняя напряжения на концах этого участка, сила тока также изменится. Причем если мы уменьшим величину сопротивления, то сила тока возрастет во столько же раз. И, наоборот, при увеличении сопротивления сила тока пропорционально уменьшается.

Формула закона Ома для участка цепи

Сопоставив две эти зависимости, можно прийти к такому же выводу, к которому пришел немецкий ученый Георг Ом в 1827 г. Он связал воедино три вышеуказанные физические величины и вывел закон, который назвали его именем. Закон Ома для участка цепи гласит:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

I=U/R,

где I – сила тока,
U – напряжение,
R – сопротивление.

Закон Ома – определение

Впервые данный закон был официально зафиксирован и сформулирован в восемнадцатом веке, благодаря сделанному сейчас уже широко известным всем Георгом Симоном Омом открытию. Благодаря данному закону получило грамотное и исчерпывающее объяснение наличие количественной связи между тремя фигурирующими в определении параметрами. Зависимость рассматривается как пропорциональная. Когда данное явление только было выявлено, закон несколько раз формулировали. В итоге сейчас всем известно данное определение: «величина тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна его сопротивлению».

Для лучшего понимания разделим определение на две части и разберём отдельно более понятным языком смысл каждой.

  1. Первая часть определения указывает на то, что если на определенной отрезке цепи происходит количественный скачок напряжения, то величина тока также увеличивается на данном участке. Важно упомянуть, что становится больше и величина тока на заданном участке цепи.
  2. Концовка определения расшифровывается также просто. Выше напряжение – меньше сила тока.

Закон Ома – формула

Иллюстрация связи сопротивления

Рисунок наглядно демонстрирует связь фигурирующих в понятии «участников». Таким образом, вытекают простые выводы:

1. При данных условиях: на конкретном отрезке увеличивается напряжение, но при том сопротивление остаётся прежним, ток резко возрастает;

2. Иная ситуация: наоборот, изменяется сопротивление, а точнее возрастает, при том что уровень напряжения не меняется вовсе, тока становится меньше.

В итоге в законе Ома участвуют всего три величины.

Готовая формула выглядит так:

I = U/R

Фигурируют и другие две переменные, их также можно вычислить, при условии, что другие два значения известны. Видоизменив формулу, получим:

Формула сопротивления R = U/I
Формула напряжения U = I × R
Формула силы тока I = U/R

Важно!

Шпаргалка для закона Ома

На начальном этапе, когда составлять формулы ещё сложно, можно воспользоваться небольшой шпаргалкой.

На треугольнике просто нужно закрыть то значение, которое необходимо найти.

Применение закона Ома

Закон Ома – один из основополагающих законов физики. Открытие его в свое время позволило сделать огромный скачок в науке. В настоящее время невозможно себе представить любой самый элементарный расчет основных электрических величин для любой цепи без использования закона Ома. Представление об этом законе – это не удел исключительно инженеров-электронщиков, а необходимая часть базовых знаний любого мало-мальски образованного человека. Недаром есть поговорка: «Не знаешь закон Ома – сиди дома».

Из формулы для закона Ома можно рассчитать также величины напряжения и сопротивления участка цепи:

U=IR и R=U/I

Правда, следует понимать, что в собранной цепи величина сопротивления некоторого участка цепи есть величина постоянная, поэтому при изменении силы тока будет изменяться только напряжение и наоборот. Для изменения сопротивления участка цепи следует собрать цепь заново. Расчет же требуемой величины сопротивления при проектировании и сборке цепи можно произвести по закону Ома, исходя из предполагаемых значений силы тока и напряжения, которые будут пропущены через данный участок цепи.

Нужна помощь в учебе?


Предыдущая тема: Сопротивление тока: притяжение ядер, проводники и непроводники
Следующая тема:&nbsp&nbsp&nbspРасчёт сопротивления проводников и реостаты: формулы

Закон Ома для магнитной цепи

В каждом электромагните совмещены несколько важных элементов: стальной сердечник и катушка. По последней протекает ток. При совмещении нескольких участков образуется магнитная цепь.

При кольцевом магнитопроводе все поле находится внутри кольца. Тогда поток в магнитопроводе равен:

Ф = Вср S = μHср S

Формула закона для магнитной цепи:

Формула закона ома для магнитной цепи

Задачи с решениями на закон Ома

Задача №1

Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 127 В. Определить силу тока в проволоке.

Дано:

  • l = 120 м,
  • S = 0,5 мм,
  • U = 127 В,
  • p = 1,1 Ом*мм2 /м.

Найти: I — ?

Решение:

  • R = p * l / S,
  • R = 1,1 Ом*мм2 /м * 120 м : 0,5 мм = 264 Ом,
  • I = 127 В : 264 Ом = 0,48 А.

Ответ: I = 0,48 Ом

Задача №2

Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 220 В. Определить силу тока в проволоке.

Дано:

Закон Ома для постоянного тока

В данном случае частота будет равняться нулевому значению, поэтому остальные показатели также будут нулевыми соответственно, в то время как значение ёмкости достигнет бесконечности. Цепь разорвётся. Поэтому отсюда вытекает логичный вывод: реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для однородного участка цепи

Формула выглядит уже известным образом:

I = U/R

В данном случае главной характеристикой проводника остаётся сопротивление. От того, как выглядит проводник, зависит количество узлов кристаллической решётки и атомов примесей. Поэтому электроны могут замедляться или ускоряться.

Сопротивление будет зависеть от вида проводника, а именно от его сечения, материала и длины:

R = p (L/S)

Закон Ома в дифференциальной форме

Дифференциальная форма закона Ома

Закон можно представить таким образом, чтобы он не был привязан к размерам проводника. Для этого выделим участок проводника Δl, на концах которой расположены ф1 и ф2. Среднюю площадь проводника обозначают ΔS , а плотность тока j, при таких условиях сила тока будет равняться:

I = jΔS = (ф1- ф2) / R = -(((ф1 — ф2)ΔS) / pΔl , отсюда следует, что j = -y × (Δф/Δl)

При условии, что Δl будет равен 0, то, взяв предел отношения:

lim (-(Δф/Δl)) = -(dф/dl) = Е,

окончательное выражение будет выглядеть так:

j = yE

Данное выражение закона находит силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон Ома в интегральной форме

В данной интерпретации закона не содержится в условиях ЭДС, то есть формула выглядит так:

I = U/R

Чтобы найти значение для однородного линейного проводника, выразим R через p и получим:

R = p (l/S), где за р принимаем удельное объёмное сопротивление.

Линией тока принято называть кривую, в каждой точке которой вектор плотности тока направлен по касательной к этой кривой. При таких условиях вектор плотности находится из отношения J = jt, где t – это единичный вектор касательной к линии тока.

Для лучшего понимания предположим, что удельное сопротивление, а также напряженность поля движущих сил на поперечном сечении проводника однородны. При таком условии Е однородна, а значит, и j также однородная величина. Примем произвольное значение поперечного сечения цепи S, тогда pl/s = E. Получившееся равенство умножим на dl. Тогда Edl = (Е эл.ст.+Е стор.) dl = Е эл.ст. dl + Е стор. dl = -dф + dE. Отсюда получим (pI/S) dl = -dф + dE. Возьмём в учёт, что p/s dl = dR и запишем закон Ома в интегральной форме:

IdR = -dф + dE.

Закон Ома в комплексной форме

Чтобы провести анализ электрических цепей синусоидального тока, комфортнее использовать закон Ома в комплексной форме. Для лучшего понимания введем основное понятие, фигурирующее в данной интерпретации закона: синусоидальный ток – это линейные цепи с установившимся режимом работы, после того, как переходные процессы в них завершены, уровень напряжения резко уменьшается на конкретной дистанции, токи в ветвях и ЭДС источников являются синусоидальными функциями времени. В противном случае, когда данные параметры не соблюдаются, закон не может быть применим. Чем отличается эта форма от обычной? Ответ прост: токи, сопротивление и ЭДС фиксируются как комплексные числа. Это обусловлено тем, что существуют как активные так и реактивные значения напряжений, токов и сопротивлений, а в результате этого требуется внесение определенных коррективов.

Вместо активного сопротивления используется полное, то есть комплексное сопротивление цепи Z. Падение напряжения, ток и ЭДС тоже превращаются в комплексные величины. При реальных расчетах лучше и удобнее применять действующие значения. Итак, закон в комплексной форме выглядит так:

i = U/Z, i = UY

В данной формуле Z – комплексное сопротивление, Y – комплексная проводимость.

Чтобы выявить эти величины, выведены формулы. Пропустим шаги их создания и приведем готовые формулы:

Z = ze = z cosф + jz sinф = r + jx

Y = 1/ ze = ye = y cos ф — jy sin ф = g + jb

  • Главная
  • Для учителя
    • Архив заданий олимпиад по физике за 2009-2015 годы
    • Владимир Анатольевич Зверев предлагает
    • ИКТ на уроке физики
    • История физики на уроке и во внеурочной деятельности
    • Несколько ссылок на работы Анатолия Шперха
    • Общие вопросы методики обучения физике
    • Статьи Александра Борисовича Рыбакова
      • Важнейший общефизический принцип остается непонятым
      • Рыбаков А. Б. Почитаем «Физику» вместе
      • Рыбаков А.Б. Несколько замечаний о «Физике (ПС)», №10, 2015
      • Рыбаков А.Б. О №12 «Физики (ПС)» и динамике автомобиля, или Спасут ли школу вузовские преподаватели?
      • А.Б.Рыбаков Банджи-джампинг, сохранение импульса и уравнение Мещерского
      • Рыбаков А.Б. О вращении Земли и всяком таком, или Удивительная физика в журнале «Физика (ПС)», №2/2015
      • Рыбаков А.Б. Заметки о демоверсии-2012
      • Рыбаков А.Б. Заметки о демоверсии-2014
    • Материалы семинара учителей физики 13-16 июня 2017 года
  • Экзамены
    • ЕГЭ
      • Учителю
        • Демоверсии ГИА на 2018 год для обсуждения
      • Выпускнику
        • Курс подготовки к ЕГЭ по физике
          • Механика
          • МКТ и термодинамика
          • Геометрическая и волновая оптика
          • Электродинамика
        • Материалы для подготовки к ЕГЭ
    • ОГЭ
  • Конспекты
    • Механика
      • Определения
      • Формулы
      • Конспекты
    • МКТ и термодинамикa
      • Определения
      • Опорные конспекты по МКТ и термодинамике Н.А. Скрябиной
      • Формулы
      • Конспекты
    • Электродинамика
      • Определения
      • Формулы
      • Опорные конспекты по электростатике и постоянному току Н.А. Скрябиной
      • Опорные конспекты Н.А. Скрябиной по электромагнетизму
      • Конспекты
    • Колебания и волны
      • Определения
      • Конспекты
    • Оптика
      • Определения
      • Формулы
      • Конспекты
    • Атомная и квантовая физика
      • Определения
      • Формулы
      • Конспекты
    • Сводная таблица формул школьной физики.
    • Опорные конспекты Г.Н. Степановой
  • Физики
  • Библиотека
    • Биографии и мемуары
    • Литература по истории физики
    • Литература для учителя
    • Задачники
    • ЕГЭ и ГИА
    • Научно-популярная литература
    • Книги в полнотекстовом режиме
    • Справочники по физике
  • Медиатека
    • Фильмы
    • Презентации
    • Анимации
  • О нас
    • Сообщество
    • Администрация
    • О проекте
    • Партнёры

Рубрики: Статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *